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Foreword

I first met one of the authors, Dr. Ravishankar (Ravi) Chityala, in 2006

when he was a PhD student at the Toshiba Stroke Research Center,

SUNY-Buffalo. Ravi’s PhD work in medical imaging was fruitful and

influential, and I have been following his post-PhD career ever since.

In reading this book, I was impressed by the fact that, despite Ravi’s

current focus on computing and visualization, his knowledge of medical

imaging has only deepened and expanded, which has enabled him, along

with his co-author, Dr. Sridevi Pudipeddi, to write a very competent

treatment of the subject of medical imaging. Thus, it is a pleasure for

me to write a foreword to this very good book.

This is a book that every imaging scientist should have on his

or her desk because image acquisition and processing is becoming a

standard method for qualifying and quantifying experimental measure-

ments. Moreover, I believe students and researchers need a course or a

book to learn both image acquisition and image processing using a sin-

gle source, and this book, as a well-rounded introduction to both topics,

serves that purpose very well. The topics treated are complex, but the

authors have done a great job of covering the most commonly used

image acquisition modalities, such as x-ray and computed tomography,

magnetic resonance imaging, and microscopes, concisely and effectively,

providing a handy compendium of the most useful information.

As Confucius said, “I see and I remember, I do and I understand;”

this book aims to provide hands-on learning that enables the reader to

understand the concepts explained in the book by means of applying

the various examples written in the Python code. But do not be dis-

couraged if you have never used Python or any other script language

xvii
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since learning it is very straightforward. As a long-time Perl user, I had

no problem installing Python and trying several useful examples from

the book. Most of the equations provided in the book are accompanied

by codes that can be quickly run and modified for the reader to test

new ideas and apply to his or her own research.

Being a medical imaging scientist myself, I really enjoyed reading

the sections on x-ray, computed tomography and magnetic resonance

imaging. The authors provide a well-balanced introduction to these

modalities and cover all the important aspects of image acquisition,

as well as image reconstruction and artifacts correction. The authors

also provide a large number of references to other books and papers for

readers interested in learning more details.

In summary, the strengths of the book are:

1. It teaches image processing using Python, one of the easiest and

most powerful programming languages

2. It covers commonly used image acquisition and processing

techniques

3. It cements readers’ understanding with numerous clear examples.

Alexander Zamyatin

Distinguished Scientist

Toshiba Medical Research Institute USA, Inc.

Vernon Hills, Illinois



Preface

We received feedback from people who bought the first edition of the

book and also from experts in the topic while working on the second

edition of the book.

We added three new chapters and one new appendix. When the

first edition was written, machine learning (ML) and deep learning

(DL) were not yet mainstream. Today, problems that cannot be solved

by using traditional image processing and computer vision techniques

are being solved using ML and DL. So we added one chapter on neural

network and another chapter on convolutional neural network (CNN).

In these two chapters, we discuss the mathematical underpinnings of

these two networks. We also discuss solving these two networks using

Keras, a ML / DL library.

We also added a new chapter on affine transformation, a geometric

transformation that preserves lines. We also added an appendix on par-

allel computing using joblib, a Python module that allows distributing

tasks to multiple Python process that can run on multiple cores on a

given computer.

We added new algorithms to existing chapters and also improved

the explanation of the code. Some of the new algorithms introduced

are Frangi filter, Contrast Limited Adaptive Histogram Equaliza-

tion (CLAHE), Local contrast normalization, Chan-Vese segmentation,

Gray scale morphology etc.

When the first edition was written, we used Python 2.7 for testing

the code. As of January 2020, Python 2.7 is no longer supported. So we

modified the code for the latest version of Python 3. We also modified

the code for the latest version of numpy, scipy, scikit and OpenCV.

We hope you enjoy learning from the book.
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Preface to the First Edition

Image acquisition and processing have become a standard method for

qualifying and quantifying experimental measurements in various Sci-

ence, Technology, Engineering, and Mathematics (STEM) disciplines.

Discoveries have been made possible in medical sciences by advances

in diagnostic imaging such as x-ray based computed tomography (CT)

and magnetic resonance imaging (MRI). Biological and cellular func-

tions have been revealed with new imaging techniques in light based

microscopy. Advancements in material sciences have been aided by elec-

tron microscopy. All these examples and many more require knowledge

of both the physical methods of obtaining images and the analytical

processing methods to understand the science behind the images. Imag-

ing technology continues to advance with new modalities and meth-

ods available to students and researchers in STEM disciplines. Thus,

a course in image acquisition and processing has broad appeal across

the STEM disciplines and is useful for transforming undergraduate and

graduate curriculum to better prepare students for their future.

This book covers both image acquisition and image processing.

Existing books discuss either image acquisition or image processing,

leaving a student to rely on two different books containing different

notations and structures to obtain a complete picture. Integration of

the two is left to the readers.

During the authors’ combined experiences in image processing, we

have learned the need for image processing education. We hope this

book will provide sufficient background material in both image acqui-

sition and processing.
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Audience

The book is intended primarily for advanced undergraduate and

graduate students in applied mathematics, scientific computing, med-

ical imaging, cell biology, bioengineering, computer vision, computer

science, engineering and related fields, as well as to engineers, profes-

sionals from academia, and the industry. The book can be used as a

textbook for an advanced undergraduate or graduate course, a summer

seminar course, or can be used for self-learning. It serves as a self-

contained handbook and provides an overview of the relevant image

acquisition techniques and corresponding image processing. The book

also contains practice exercises and tips that students can use to remem-

ber key information.
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Introduction

This book is meant for upper level undergraduates, graduate students

and researchers in various disciplines in science, technology and mathe-

matics. The book covers both image acquisition and image processing.

The knowledge of image acquisition will help readers to perform experi-

ments more effectively and cost efficiently. The knowledge of image pro-

cessing will help the reader to analyze and measure accurately. Through

this book, the concepts of image processing will become ingrained using

examples written using Python, long recognized as one of the easiest

languages for non-programmers to learn.

Python is a good choice for teaching image processing because:

1. It is freely available and open source. Since it is a free software,

all students will have access to it without any restriction.

2. It provides pre-packed installations available for all major plat-

forms at no cost.

3. It is the high-level language of choice for scientists and engineers.

4. It is recognized as perhaps the easiest language to learn for non-

programmers.

Due to new developments in imaging technology as well as the sci-

entific need for higher resolution images, the image data sets are getting

larger every year. Such large data sets can be analyzed quickly using

a large number of computers. Closed source software like MATLABR©

cannot be scaled to a large number of computers as the licensing cost is

high. On the other hand, Python, being free and open-source software,

xxv
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can be scaled to thousands of computers at no cost. For these reasons,

we strongly believe the future need for image processing for all students

can be met using Python.

The book consists of three parts: Python programming, image pro-

cessing, and image acquisition. Each of these parts consists of multiple

chapters. The parts are self-contained. Hence, a user well versed in

Python programming can skip Part I and read only Parts II and III.

Each chapter contains many examples, detailed derivations, and work-

ing Python examples of the techniques discussed within. The chapters

are also interspersed with practical tips on image acquisition and pro-

cessing. The end of every chapter contains a summary of the important

points discussed and a list of exercise problems to cement the reader’s

understanding.

Part I consists of introduction to Python, Python modules, read-

ing and writing images using Python, and an introduction to images.

Readers can skip or skim this part if they are already familiar with the

material. This part is a refresher and readers will be directed to other

resources as applicable.

In Part II, we discuss image processing and computer vision algo-

rithms. The various chapters discuss pre- and post-processing using

filters, affine transformation, segmentation, morphological operations,

image measurements, neural network and convolutional neural network.

In Part III, we discuss image acquisition using various modal-

ities such as X-ray, Computed Tomography (CT), Magnetic Reso-

nance Imaging (MRI), light microscopy and electron microscopy. These

modalities cover most of the common image acquisition methods used

currently by researchers in academia and industry.

Details about exercises

The Python programming and image processing parts of the book

contain exercises that test the reader’s skills in Python program-

ming, image processing, and integration of the two. Solutions to odd-

numbered problems, example programs and images are available at

https://github.com/zenr/IMAUP-book-ed-2.

https://github.com/
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Chapter 1

Introduction to Python

1.1 Introduction

Before we begin discussion on image acquisition and processing

using Python, we will provide an overview of the various aspects of

Python. This chapter focuses on some of the basic materials covered

by many other books [Bea09], [Het10], [Lut06], [Vai09] and also from

the book, “Essential Python” ([PC18]), a book from the authors of this

book. If you are already familiar with Python and are currently using

it, then you can skip this chapter.

We begin with an introduction to Python. We will then discuss

the installation of Python with all the modules using the Anaconda

distribution. Once the installation has been completed, we can begin

exploring the various features of Python. We will quickly review the

various data structures such as list, dictionary, and tuples and state-

ments such as for-loop, if-else, iterators and list comprehension.

1.2 What Is Python?

Python is a popular high-level programming language. It can han-

dle various programming tasks such as numerical computation, web

development, database programming, network programming, parallel

processing, etc.

3
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Python is popular for various reasons including:

1. It is free.

2. It is available on all the popular operating systems such as Win-

dows, Mac or Linux.

3. It is an interpreted language. Hence, programmers can test por-

tions of code on the command line before incorporating it into

their program. There is no need for compiling or linking.

4. It gives the ability to program faster.

5. It is syntactically simpler than C/C++/Fortran. Hence it is

highly readable and easier to debug.

6. It comes with various modules that are standard or can be

installed in an existing Python installation. These modules can

perform various tasks like reading and writing various files, sci-

entific computation, visualization of data, etc.

7. Programs written in Python can be run on various OS or plat-

forms with little or no change.

8. It is a dynamically typed language. Hence the data type of vari-

ables does not have to be declared prior to their use, making it

easier for people with less coding experience.

9. It has a dedicated developer and user community and is kept up

to date.

Although Python has many advantages that have made it one of

the most popular interpreted languages, it has a couple of drawbacks

that are discussed below:

1. Since its focus is on the ability to program faster, the speed of

execution suffers. A Python program might be 10 times or more

slower (say) than an equivalent C program, but it will contain
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fewer lines of code and can be programmed to handle multiple

data types easily. This drawback in the Python code can be over-

come by converting the computationally intensive portions of the

code to C/C++ or by the appropriate use of data structure and

modules.

2. Indentation of the code is not optional. This makes the code read-

able. However, a code with multiple loops and other constructs

will be indented to the right, making it difficult to read the code.

1.3 Python Environments

There are several Python environments from which to choose. Some

operating systems like Mac, Linux, Unix, etc. have a built-in inter-

preter. The interpreter may contain all modules but is not turn-key

ready for scientific computing. Specialized distributions have been cre-

ated and sold to the scientific community, pre-built with various Python

scientific modules. When using these distributions, the users do not

have to individually install scientific modules. If a particular mod-

ule that is of interest is not available in the distribution, it can be

installed. One of the most popular distributions is Anaconda [Ana20b].

The instructions for installing Anaconda distribution can be found at

https://www.anaconda.com/distribution/.

1.3.1 Python Interpreter

The Python interpreter built into most operating systems can be

started by simply typing python in the terminal window. When the

interpreter is started, a command prompt (>>>) appears. Python com-

mands can be entered at the prompt for processing. For example, in

Mac, when the built-in Python interpreter is started, an output similar

to the one shown below appears:

https://www.anaconda.com/
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(base) mac:ipaup ravi$ python

Python 3.7.3 | packaged by conda-forge |

(default, Dec 6 2019, 08:36:57)

[Clang 9.0.0 (tags/RELEASE_900/final)] :: Anaconda, Inc.

on darwin

Type "help", "copyright", "credits" or "license"

for more information.

>>>

Notice that in the example above, the Python interpreter is version

3.7.3. It is possible that you might have a different version.

1.3.2 Anaconda Python Distribution

The Anaconda Python Distribution [Ana20a] provides programmers

with close to 100 of the most popular scientific Python modules like sci-

entific computation, linear algebra, symbolic computing, image process-

ing, signal processing, visualization, integration of C/C++ programs to

Python etc. It is distributed and maintained by Continuum Analytics.

It is available for free for academics and is available for a price to all

others. In addition to the various modules built into Anaconda, pro-

grammers can install other modules using the conda [Ana20b] package

manager, without affecting the main distribution.

To access Python from the command line, start the ‘Anaconda

Prompt’ executable and then type python.

1.4 Running a Python Program

Using any Python interpreter (built-in or from a distribution), you

can run your program using the command at the operating system (OS)

command prompt. If the file firstprog.py is a Python file that needs
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to be executed, then type the following command on the OS command

prompt.

>> python firstprog.py

The >> is the terminal prompt and >>> represents the Python

prompt.

The best approach to running Python programs under any oper-

ating systems is to use an Integrated Development Environment like

IDLE or Spyder as it provides an ability to edit the file and also run it

under the same interface.

1.5 Basic Python Statements and Data Types

Indentation

In Python, a code block is indicated by indentation. For example in

the code below, we first print a message, ‘We are computing squares of

numbers between 0 and 9’. Then we loop through values in the range

of 0 to 9 and store it in the variable ‘i’ and also print the square of ‘i’.

Finally we print the message, ‘We completed the task ...’ at the end.

In other languages, the code block under the for-loop would be

identified with a pair of curly braces {}. However, in Python we do

not use curly braces. The code block is identified by moving the line

print(i*i) four spaces to the right. You can also choose to use a tab

instead.

print('Computing squares of numbers between 0 and 9')

for i in range(10):

print(i*i)

print('Completed the task ...')

There is a significant disadvantage to indentation especially to

new Python programmers. A code containing multiple for-loops and
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if-statements will be indented farther to the right making the code

unreadable. This problem can be alleviated by reducing the number of

for-loops and if-statements. This not only makes the code readable but

also reduces computational time. This can be achieved by programming

using data structures like lists, dictionary, and sets appropriately.

Comments

Comments are an important part of any programming language. In

Python, a single line comment is denoted by a hash # at the beginning

of a line. Multiple lines can be commented by using triple quoted strings

(triple single quotes or triple double quotes) at the beginning and at

the end of the block.

# This is a single line comment

'''

This is

a multiline

comment

'''

# Comments are a good way to explain the code.

Variables

Python is a dynamic language and hence you do not need to specify

the variable type as in C/C++. Variables can be imagined as contain-

ers of values. The values can be an integer, float, string, lists, tuples,

dictionary, set, etc.

>>> a = 1

>>> a = 10.0

>>> a = 'hello'



Introduction to Python 9

In the above example the integer value of 1, float value of 10.0, and

a string value of hello for all cases are stored in the same variable.

However, only the last assigned value is the current value for a.

Operators

Python supports all the common arithmetic operators such as

+,−, ∗, /. It also supports the common comparison operators such

as >,<,==, ! =, >=, <=, etc. In addition, through various modules

Python provides many operators for performing trigonometric, mathe-

matical, geometric operations, etc.

Loops

The most common looping construct in Python is the for-loop

statement, which allows iterating through the collection of objects. Here

is an example:

>>> for i in range(1,5):

... print(i)

In the above example the output of the for-loop are the numbers

from 1 to 5. The range function allows us to create values starting from

1 and ending with 5. Such a concept is similar to the for-loop normally

found in C/C++ or most programming languages.

The real power of for-loop lies in its ability to iterate through

other Python objects such as lists, dictionaries, sets, strings, etc. We

will discuss these Python objects in more detail subsequently.

>>> a = ['python', 'scipy']

>>> for i in a:

... print(i)

In the program above, the for-loop iterates through each element

of the list and prints it.

In the next program, the content of a dictionary is printed using the

for-loop. A dictionary with two keys lang and ver is defined. Then,

using the for-loop, the various keys are iterated and the corresponding

values are printed.
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>>> a = {

'lang':'python'

'ver': '3.6.6'

}

>>> for keys in a:

... print(a[key])

The discussion about using a for-loop for iterating through the

various lines in a text file, such as comma separated value file, is post-

poned to a later section.

if-else statement

The if-else is a popular conditional statement in all programming

languages including Python. An example of if-elif-else statement

is shown below.

if a<10:

print('a is less than 10')

elif a<20:

print('a is between 10 and 20')

else:

print('a is greater than 20')

The if-else statement conditionals do not necessarily have to use

the conditional operators such as <,>,==, etc.

For example, the following if statement is legal in Python. This if

statement checks for the condition that the list d is not empty.

>>> d = [ ]

>>> if d:

... print('d is not empty')

... else:

... print('d is empty')

d is empty
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In the above code, since d is empty, the else clause is true and we

enter the else block and print d is empty.

1.5.1 Data Structures

The real power of Python lies in the liberal usage of its data struc-

ture. The common criticism of Python is that it is slow compared to

C/C++. This is especially true if multiple for-loops are used in pro-

gramming Python. This can be alleviated by appropriate use of data

structures such as lists, tuples, dictionary and sets. We describe each

of these data structures in this section.

Lists

Lists are similar to arrays in C/C++. But, unlike arrays in C/C++,

lists in Python can hold objects of any type such as int, float, string and

including another list. Lists are mutable, as their size can be changed

by adding or removing elements. The following examples will help show

the power and flexibility of lists.

>>> a = ['python','scipy', 3.6]

>>> a.pop(-1)

3.6

>>> print(a)

a = ['python','scipy']

>>> a.append('numpy')

>>> print(a)

['python','scipy', 3.6]

>>> print(a[0])

python

>>> print(a[-1])

numpy

>>> print(a[0:2])

['python','scipy']
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In the first line, a new list is created. This list contains two strings

and one floating-point number. In the second line, we use the pop func-

tion to remove the last element (index = −1). The popped element

is printed to the terminal. After the pop, the list contains only two

elements instead of the original three. We use append, and insert a

new element, “numpy” to the end of the list. Finally, in the next two

commands we print the value of the list in index 0 and the last posi-

tion indicated by using “−1” as the index. In the last command, we

introduce slicing and obtain a new list that contains only the first two

values of the list. This indicates that one can operate on the list using

methods such as pop, insert, or remove and also using operators such

as slicing.

A list may contain another list. Here is an example. We will consider

the case of a list containing four numbers and arranged to look like a

matrix.

>>> a = [[1,2],[3,4]]

>>> print(a[0])

[1,2]

>>> print(a[1])

[3,4]

>>> print(a[0][0])

1

In line 1, we define a list of the list. The values [1, 2] are in the

first list and the values [3, 4] are in the second list. The two lists are

combined to form a 2D list. In the second line, we print the value of

the first element of the list. Note that this prints the first row or the

first list and not just the first cell. In the fourth line, we print the value

of the second row or the second list. To obtain the value of the first

element in the first list, we need to index the list as given in line 6. As

you can see, indexing the various elements of the list is as simple as

calling the location of the element in the list.
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Although the list elements can be individually operated, the power

of Python is in its ability to operate on the entire list at once using list

methods and list comprehensions.

List functions/methods

Let us consider the list that we created in the previous section.

We can sort the list using the sort method as shown in line 2. The

sort method does not return a list; instead, it modifies the current list.

Hence the existing list will contain the elements in a sorted order. If

a list contains both numbers and strings, Python sorts the numerical

values first and then sorts the strings in alphabetical order.

>>> a = ['python','scipy','numpy']

>>> a.sort()

>>> a

['numpy','python','scipy']

List comprehensions

A list comprehension allows building a list from another list. Let us

consider the case where we need to generate a list of squares of numbers

from 0 to 9. We will begin by generating a list of numbers from 0 to 9.

Then we will determine the square of each element.

>>> a = list(range(10))

>>> print(a)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> b = [x*x for x in a]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> b = []

>>> for x in a:

b.append(x*x)

>>> print(b)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In line 1, a list is created containing values from 0 to 9 using the

function “range” and the print command is given in line 2. In line
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number 4, list comprehension is performed by taking each element in

’a’ and multiplying by itself. The result of the list comprehension is

shown in line 5. The same operation can be performed by using lines

6 to 8 but the list comprehension approach is compact in syntax as it

eliminates two lines of code, one level of indentation, and a for-loop. It

is also faster when applied to a large list.

For a new Python programmer, the list comprehension might seem

daunting. The best way to understand and read a list comprehension is

by imagining that you will first operate on the for-loop and then begin

reading/writing the left part of the list comprehension. In addition to

applying for-loop using list comprehension, you can also apply logical

operations like if-else.

Tuples

Tuples are similar to lists except that they are not mutable, i.e.,

the length and the content of the tuple cannot be changed at runtime.

Syntactically, the list uses [ ] while tuples use ( ). Similar to lists,

tuples may contain any data type including other tuples. Here are a

few examples:

>>> a = (1,2,3,4)

>>> print(a)

(1,2,3,4)

>>> b = (3,)

>>> c = ((1,2),(3,4))

In line 1, we define a tuple containing four elements. In line 4, we

define a tuple containing only one element. Although the tuple contains

only one element, we need to add the trailing comma, so that Python

understands it as a tuple. Failure to add a comma at the end of this

tuple will result in the value 3 being treated as an integer and not a

tuple. In line 5, we create a tuple inside another tuple.
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Sets

A set is an unordered collection of unique objects. To create a set,

we need to use the function set or the operator {}. Here are some

examples:

>>> s1 = set([1,2,3,4])

>>> s2 = set((1,1,3,4))

>>> print(s2)

set([1,3,4])

In line 1, we create a set from a list containing four values. In line

2, we create a set containing a tuple. The elements of a set need to be

unique. Hence when the content of s2 is printed, we notice that the

duplicates have been eliminated. Sets in Python can be operated using

many of the common mathematical operations on sets such as union,

intersection, set difference, symmetric difference, etc.

Since sets do not store repeating values and since we can convert

lists and tuples to sets easily, they can be used to perform useful oper-

ations faster which otherwise would involve multiple loops and condi-

tional statements. For example, a list containing only unique values can

be obtained by converting the list to a set and back to a list. Here is

an example:

>>> a = [1,2,3,4,3,5]

>>> b = set(a)

>>> print(b)

set([1,2,3,4,5])

>>> c = list(b)

>>> print(c)

[1,2,3,4,5]

In line 1, we create a list containing six values with one duplicate.

We convert the list into a set by using the set() function. During this

process, the duplicate value 3 is eliminated. We can then convert the

set back to list using the list() function.
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Dictionaries

Dictionaries store key-value pairs. A dictionary is created by enclos-

ing a key-value pair inside { }.

>>> a = {

'lang':'python'

'ver': '3.6.6'

}

Any member of the dictionary can be accessed using [ ] operator.

>>> print a['lang']

python

To add a new key,

>>> a['creator'] = 'Guido Von Rossum'

>>> print(a)

{'lang': 'python', 'ver': '3.6.6', 'creator': 'Guido Von

Rossum'}

In the example above, we added a new key called creator and stored

the string, “Guido Von Rossum.”

In certain instances, the dictionary membership needs to be tested

using the ‘in’ operator. To obtain a list of all the dictionary keys, use

the keys() method.

1.5.2 File Handling

This book is on image processing; however, it is important to under-

stand and be able to include in your code, reading and writing text files

so that the results of computation can be written or the input param-

eters can be read from external sources. Python provides the ability

to read and write files. It also has functions, methods and modules for

reading specialized formats such as the comma separated value (csv)

file, Microsoft Excel (xls) format, etc. We will look into each method

in this section.
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The following code reads a csv file as a text file.

>>> fo = open('myfile.csv')

>>> for i in fo.readlines():

... print(i)

>>> fo.close()

Python,3.6.6

Django, 3.0.5

Apache, 2.4

The first line opens a file and returns a new file object which is

stored in the file object “fo.” The method readlines in line 2, reads

all the lines of input. The for-loop then iterates over each of those lines,

and prints. The file is finally closed using the close method.

The output of the print command is a string. Hence, string manip-

ulation using methods like split, strip, etc., needs to be applied in order

to extract elements of each column. Also, note that there is an extra

newline character at the end of each print statement.

Reading CSV files

Instead of reading a csv file as a text file, we can use the csv module.

>>> import csv

>>> for i in csv.reader(open('myfile.csv')):

... print(i)

['Python', '3.6.6']

['Django', ' 3.0.5']

['Apache', ' 2.4']

The first line imports the csv module. The second line opens and

reads the content of the csv file using the reader function in the csv

module. In every iteration of the loop, the content of one line of the csv

file is returned and stored in the variable ‘i’. Finally, the value of ‘i’ is

printed.
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Reading Excel files

Microsoft Excel files can be read and written using the openpyxl

module. The openpyxl module has to be installed before we can use it.

To install this module, you can go to the Python prompt and type ‘pip

install openpyxl’. Alternately, the module can be installed by selecting

the Environment tab in Anaconda Navigator. Here is a simple example

of reading an Excel file using the openpyxl module.

from openpyxl import load_workbook

wb = load_workbook('myfile.xlsx')

for sheet in wb:

for row in sheet.values:

for col in row:

print(col, end=' | ')

print()

In line 2, the open workbook() function is used to read the file. We

loop through all sheets in the file. In this particular example, there is

only one sheet. Then we loop through each row in the sheet followed

by looping through every column. In the print function where the value

in a column is printed, we are indicating that a column must be sepa-

rated from the next column by a | (pipe symbol). Finally the last print

function adds a new line, so that the next row can be printed in a new

line.

Date | Time |

2020-01-02 00:00:00 | 10:15:00 |

2020-01-05 00:00:00 | 11:00:00 |

2020-01-07 00:00:00 | 15:00:00 |

1.5.3 User-Defined Functions

A function is a reusable section of code that may take input and

may or may return an output. If there is any block of code that will be
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called many times, it is advisable to convert it to a function. Calls can

then be made to this function.

A Python function can be created using the def keyword. Here is

an example:

import math

def circleproperties(r):

area = math.pi*r*r;

circumference = 2*math.pi*r

return area, circumference

a, c = circleproperties(5) # Radius of the circle is 5

print("Area and Circumference of the circle are", a, c)

The function circleproperties takes in one input argument, the

radius (r). The return statement at the end of the function definition

passes the computed values (in this case, area and circumference) to the

calling function. To invoke the function, use the name of the function

and provide the radius value as an argument enclosed in parentheses.

Finally, the area and circumference of the circle are displayed using the

print function call.

The variables area and circumference have local scope. Hence the

variables cannot be invoked outside the body of the function. It is

possible to pass on variables to a function that have global scope using

the global statement.

When we run the above program, we get the following output:

Area and Circumference of the circle are 78.539 31.415

1.6 Summary

• Python is a popular high-level programming language. It is used

for most common programming tasks such as scientific computa-

tion, text processing, building dynamic websites, etc.
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• Python distributions such as Anaconda Python distribution are

pre-built with many scientific modules and enable scientists to

focus on their research instead of installation of modules.

• Python, like other programming languages, uses common rela-

tional and mathematical operators, comment statements, for-

loops, if-else statements, etc.

• To program like a Pythonista, use lists, sets, dictionary and tuples

liberally.

• Python can read most of the common text formats like CSV,

Microsoft Excel, etc.

1.7 Exercises

1. If you are familiar with any other programming language, list the

differences between that language and Python.

2. Write a Python program that will print numbers from 10 to 20

using a for-loop.

3. Create a list of state names such as states = [‘Minnesota’, ‘Texas’,

‘New York’, ‘Utah’, ‘Hawaii’]. Add another entry ‘California’ to

the end of the list. Then, print all the values of this list.

4. Print the content of the list from Question 3 and also the

corresponding index using the list's enumerate method in the

for-loop.

5. Create a 2D list of size 3-by-3 with the following elements:

1, 2, 3|4, 5, 6|6, 7, 8

6. It is easy to convert a list to a set and vice versa. For exam-

ple, a list ‘mylist = [1, 1, 2, 3, 4, 4, 5]′ can be converted to a set
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using the command newset = set(mylist). The set can be con-

verted back to a list using newlist = list(newset). Compare

the contents of mylist and newlist. What do you infer?

7. Look up documentation for the join method and join the con-

tents of the list [‘Minneapolis’,‘MN’,‘USA’] and obtain the string

‘Minneapolis, MN, USA.’

8. Consider the following Python code:

a = [1,2,3,4,2,3,5]

b = []

for i in a:

if i>2:

b.append(i)

print(b)

Rewrite the above code using list comprehension and reduce the

number of lines.
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Chapter 2

Computing using Python Modules

2.1 Introduction

We discussed the basics of Python in the previous chapter. We

learned that Python comes with various built-in batteries or modules.

These batteries or modules perform various specialized operations. The

modules can be used to perform computation, database management,

web server functions etc. Since this book is focused on creating scientific

applications, we limit our focus to Python modules that allow compu-

tation such as the scipy, numpy, matplotlib, Python Imaging Library

(PIL), and scikit packages. We discuss the relevance of each of these

modules and explain their use with examples. We also discuss creation

of new Python modules.

2.2 Python Modules

A number of scientific Python modules have been created and are

available in the Python distributions used in this book. Some of the

most popular modules relevant to this book’s scope are:

1. numpy: A powerful library for manipulating arrays and matrices.

2. scipy: Provides functions for performing higher-order mathemat-

ical operations such as filtering, statistical analysis, image pro-

cessing, etc.
23
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3. matplotlib: Provides functions for plotting and other forms of

visualization.

4. Python Imaging Library: Provides functions for basic image

reading, writing and processing.

5. scikits: An add-on package for scipy. The modules in scikit are

meant to be added to scipy after development.

In the following sections, we will describe these modules in detail.

Please refer to [BS13],[Bre12],[Idr12] to learn more.

2.2.1 Creating Modules

A module is a Python file containing multiple functions or classes

and other optional components. All these functions and classes share a

common namespace, namely, the name of the module file. For example,

the following program is a valid Python module.

# filename: examplemodules.py

version = '1.0'

def printpi():

print('The value of pi is 3.1415')

A function named ‘printpi’ and a variable called ‘version’ was cre-

ated in this module. The function performs the simple operation of

printing the value of π.

2.2.2 Loading Modules

To load this module, use the following command in the Python

command line or in a Python program. The word “examplemodules”

is the name of the module file.

>>> import examplemodules
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Once the module is loaded, the function can be run using the com-

mand below. The first command prints the value of pi along with a

label while the second command prints the version number.

>>> examplemodules.printpi()

The value of pi is 3.1415

>>> examplemodules.version

'1.0'

The example module shown above has only one function. A module

may contain multiple functions or classes.

In the first example, the datetime module is loaded. In the example

however, we are only interested in obtaining the current date using

date.today().

>>> import datetime

>>> print(datetime.date.today())

2020-02-08

In the second example, only the necessary function (date) in the

datetime module that is needed is loaded. For large modules, it is rec-

ommended to import only the necessary functionality to make the code

readable.

>>> from datetime import date

>>> print(date.today())

2020-02-08

In the third example, we import all the functions in a given module

using *. Once imported, the file name (in this case “date”) that contains

the function (in this case “today()”) needs to be specified. This import

method is typically not recommended, as it can result in namespace

collision. For example, it is ambiguous if the date functionality is in the

datetime module or if it is from some other import statement.
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>>> from datetime import *

>>> print(date.today())

2020-02-08

In the fourth example, we import a module (in this case numpy) and

rename it to something shorter such as np. This is known as aliasing.

This will reduce the number of characters that need to be typed and

consequently the lines of code to maintain.

>>> import numpy as np

>>> np.ones([3,3])

array([[ 1., 1., 1.],

[ 1., 1., 1.],

[ 1., 1., 1.]])

For the purpose of this book, we focus on only a few modules that

are detailed below.

2.3 Numpy

A numpy module adds the ability to manipulate arrays and matrices

using a library of mathematical functions. Numpy is derived from the

now defunct modules Numeric and Numarray. Numeric was the first

attempt to provide the ability to manipulate arrays but it was very

slow for computation on large arrays. Numarray, on the other hand,

was too slow on small arrays. The code base was combined to create

numpy.

Numpy has functions and routines to perform linear algebra, ran-

dom sampling, polynomials, financial functions, set operations, etc.

Since this book is focused on image processing and since images are

arrays, we will be using the matrix manipulation capabilities of numpy.

The second module that we will be discussing is scipy, which internally

uses numpy for its matrix manipulation.
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The drawback of Python compared to C or C + + is the speed of

execution. This is in part due to its interpreted execution. A Python

program for numeric computation written with a similar construct to a

C program using a for-loop will perform considerably poorly. The best

method of programming Python for faster execution is to use numpy

and scipy modules. The following program illustrates the problem in

programming using a for-loop. In this program, the value of π is calcu-

lated using the Gregory-Leibniz-Madhava method. The method can be

expressed as

π = 4 ∗
{

1− 1

3
+

1

5
− 1

7
+

1

9
· · ·
}
. (2.1)

The corresponding program is shown below. In the program, we

perform the following operations:

1. Create the numerator and denominator separately using numpy’s

linspace and ones functions. The details of the two functions can

be found in the numpy documentation.

2. Begin a while-loop and find the ratio between the elements of

numerator and denominator and the corresponding sum.

3. Multiply the value of the sum by 4 to obtain the value of π.

4. Print the time for completing the operation.

import time

import numpy as np

def main():

noofterms = 10000000

# Calculate the denominator.

# First few terms are 1,3,5,7 ...

# den is short for denominator

den = np.linspace(1,noofterms*2,noofterms)



28 Image Processing and Acquisition using Python

# Calculate the numerator

# The first few terms are

# 1, -1, 1, -1 ...

# num is short for numerator

num = np.ones(noofterms)

for i in range(1,noofterms):

num[i] = pow(-1,i)

counter = 0

sum_value = 0

t1 = time.process_time()

while counter<noofterms:

sum_value += (num[counter]/den[counter])

counter = counter + 1

pi_value = sum_value*4.0

print("pi_value is: %f" % pi_value)

t2 = time.process_time()

# Determine the time for computation

timetaken = t2-t1

print("Time taken is: %f seconds" % timetaken)

if __name__ == '__main__':

main()

When we run the above program, we get the following output:

pi value is 3.141593

Time taken is 6.203125 seconds

The program below is the same as the one above except for step 3,

where instead of calculating the sum of the ratio of the numerator and

denominator using a while-loop or for-loop, we calculate using numpy’s

sum function.
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import numpy as np

import time

def main():

# No of terms in the series

noofterms = 1000000

# Calculate the denominator.

# First few terms are 1,3,5,7 ...

# den is short for denominator

den = np.linspace(1,noofterms*2,noofterms)

# Calculate the numerator.

# The first few terms are 1, -1, 1, -1 ...

# num is short for numerator

num = np.ones(noofterms)

for i in range(1,noofterms):

num[i] = pow(-1,i)

# Find the ratio and sum all the fractions

# to obtain pi value

# Start the clock

t1 = time.process_time()

pi_value = sum(num/den)*4.0

print("pi_value is: %f" % pi_value)

t2 = time.process_time()

# Determine the time for computation

timetaken = t2-t1

print("Time taken is: %f seconds" % timetaken)

if __name__ == '__main__':

main()
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The output of the program with numpy’s sum is:

pi value is 3.141592

Time taken is 0.328125 seconds

The first program took 6.203125 seconds while the second program

took 0.328125 seconds, for an approximate speed-up of 18. Although

this example performs a fairly simple computation, a real-world prob-

lem that takes a few weeks to solve can be completed in a few days with

the appropriate use of numpy and scipy. Also, the program is elegant

without the indentation used in the while-loop.

2.3.1 Numpy Array or Matrices?

Numpy manipulates mathematical matrices and vectors and hence

computes faster than a traditional for-loop that manipulates scalars.

In numpy, there are two types of mathematical matrix classes: arrays

and matrices. The two classes have been designed for similar purposes

but arrays are more general-purpose and n-dimensional, while matri-

ces facilitate faster linear algebra calculations. Some of the differences

between arrays and matrices are listed below:

1. Matrix objects have rank 2, while arrays have rank > 2.

2. Matrix objects can be multiplied by using the * operator, while

the same operator on an array performs element-by-element mul-

tiplication. The dot() needs to be used for performing multiplica-

tion on arrays.

3. Array is the default datatype on numpy.

The arrays are used more often in numpy and other modules that

use numpy for their computation. The matrix and array can be inter-

changed but it is recommended to use arrays.
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2.4 Scipy

Scipy is a library of functions, programs and mathematical tools

for scientific programming in Python. It uses numpy for its internal

computation. Scipy is an extensive library that allows programming

of different mathematical applications such as integration, optimiza-

tion, Fourier transforms, signal processing, statistics, multi-dimensional

image processing etc.

Travis Oliphant, Eric Jones and Pearu Peterson merged their mod-

ules to form scipy in 2001. Since then, many volunteers all over the

world have participated in maintaining scipy.

As stated in Section 2.2, loading modules can be expensive both

in CPU and memory used. This is especially true for large packages

like scipy that contain many submodules. In such cases, load only the

specific submodule.

>>> from scipy import ndimage

>>> import scipy.ndimage as im

In the first command, only the ndimage submodule is loaded. In the

second command, the ndimage module is loaded as im.

The subsequent chapters will use scipy for all their image processing

computations and hence details will be discussed later.

2.5 Matplotlib

Matplotlib is a 2D/3D plotting library for Python. It is designed to

use the numpy datatype. It can be used for generating plots inside a

Python program. An example demonstrating the features of matplotlib

is shown in Figure 2.1.
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FIGURE 2.1: Example of a plot generated using matplotlib.

2.6 Python Imaging Library

Python Imaging Library (PIL) is a module for reading, writing and

processing image files. It supports most of the common image formats

like JPEG, PNG, TIFF, etc. In a subsequent section, PIL will be used

for reading and writing images.

2.7 Scikits

Scikits is a short form for scipy toolkits. It is an additional package

that can be used along with scipy tools. An algorithm is programmed

in scikits if:

1. The algorithm is still under development and is not ready for

prime time in scipy.
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2. The package has a license that is not compatible with scipy.

3. Scipy is a general-purpose scientific package in Python. Thus, it

is designed so that it is applicable to a wide array of fields. If a

package is deemed specialized for a certain field, it continues to

be part of scikits.

Scikits consists of modules from various fields such as environmental

science, statistical analysis, image processing, microwave engineering,

audio processing, boundary value problem, curve fitting, quantum com-

puting, etc.

In this book, we will focus only on the image processing routines

in scikits named scikit-image. The scikit-image routine contains algo-

rithms for input/output, morphology, object detection and analysis,

etc.

>>> from skimage import filters

>>> import skimage.filters as fi

In the first command, only the filters submodule is loaded. In the

second command, the filters module is loaded as fi.

2.8 Python OpenCV Module

The Open Source Computer Vision Library (OpenCV) [Ope20a] is

an image processing, computer vision and machine learning software

library. It has more than 2000 algorithms for processing image data. It

has a large user base and is used extensively in academic institutions,

commercial organizations, and government agencies. It provides binding

for common programming languages such as C, C++, Python, etc.

Python binding is used in a few examples in this book.

To import the Python OpenCV module, type the following in the

command line:

>>> import cv2
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2.9 Summary

• Various Python modules for performing image processing were

discussed. They are numpy, scipy, matplotlib, Python Imaging

Library, Python OpenCV, and scikits.

• The module has to be loaded before using functions that are spe-

cific to that module.

• In addition to using existing Python modules, user-defined mod-

ules can be created.

• Numpy modules add the ability to manipulate arrays and matri-

ces using a library of high-level mathematical functions. Numpy

has two data structures for storing mathematical matrices. They

are arrays and matrices. An array is more versatile than a matrix,

and is more commonly used in numpy and also in all the modules

that use numpy for computation.

• Scipy is a library of programs and mathematical tools for scientific

programming in Python.

• Scikits is used for the development of new algorithms that can

later be incorporated into scipy.

2.10 Exercises

1. Python is an open-source and free software. Hence, there are

many modules created for image processing. Perform research and

discuss some of the benefits of each module over another.

2. Although this book is on image processing, it is important to

combine the image processing operation with other mathematical
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operations such as optimization, statistics, etc. Perform research

about combining image processing with other mathematical oper-

ations.

3. Why is it more convenient to arrange the various functions as

modules?

4. You are provided a CSV file containing a list of full path to file

names of various images. The file has only one column with mul-

tiple rows. Each row contains the path to one file. You need to

read the file name and then read the image as well. The method

for reading a CSV file was shown in Chapter 1.

5. Modify the program from Question 4 to read a Microsoft Excel

file instead.

6. Create a numpy array of size 5-by-5 containing all random values.

Determine the transpose and inverse of this matrix.
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Chapter 3

Image and Its Properties

3.1 Introduction

We begin this chapter with an introduction to images, image types,

and data structures in Python. Image processing operations can be

imagined as a workflow similar to Figure 3.1. The workflow begins with

reading an image. The image is then processed using either low-level or

high-level operations. Low-level operations operate on individual pixels.

Such operations include filtering, morphology, thresholding, etc. High-

level operations include image understanding, pattern recognition, etc.

Once processed, the image(s) are either written to disk or visualized.

The visualization may be performed during the course of processing as

well. We will discuss this workflow and the functions using Python as

an example.

FIGURE 3.1: Image processing work flow.

37
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3.2 Image and Its Properties

In the field of medical imaging, the images may span all spatial

dimensions (x-, y- and x-axis) and also the time dimension. Hence it

is common to find images in 3D, and in some cases such as cardiac

CT, images in 4D. In the case of optical microscopy, the images of

the same specimen may be acquired at various emission and excitation

wavelengths. Such images will span multiple channels and may have

more than 4 dimensions. We begin the discussion by clarifying some of

the mathematical terms that are used in this book.

For simplicity, let us assume the images that will be discussed in

this book are 3D volumes. A 3D volume (I) can be represented math-

ematically as

α = I −→ R and I ⊂ R

Thus, every pixel in the image has a real number as its value. How-

ever, in reality as it is easier to store integers than to store floats; most

images have integers for pixel values.

3.2.1 Bit-Depth

The pixel range of a given image format is determined by its bit-

depth. The range is [0, 2bitdepth − 1]. For example, an 8-bit image will

have a range of [0, 28 − 1] = [0, 255]. An image with higher bit-depth

needs more storage in disk and memory. Most of the common photo-

graphic formats such as JPEG, PNG, etc. use 8 bits for storage and

only have positive values.

Medical and microscope images use a higher bit-depth, as scientific

applications demand higher accuracy. A 16-bit medical image will have

values in the range [0, 65535] for a total number 65536 (= 216) values.

For a 16-bit image that has both positive and negative pixel values, the

range is [−32768,+32767]. The total number of values in this case is



Image and Its Properties 39

65536 (= 216) or a bit-depth of 16. A good example of such an image

is a CT DICOM image.

Scientific image formats store the pixel values at high precision, not

only for accuracy, but also to ensure that physical phenomena records

are not lost. In CT, for example, a pixel value of > 1000 indicates

bone. If the image is stored in 8-bit, the pixel value of bone would be

truncated at 255 and hence the information will be permanently lost. In

fact, the most significant pixels in CT have intensity > 255 and hence

need higher bit-depth.

There are a few image formats that store images at even higher

bit-depth such as 32 or 64. For example, a JPEG image containing

RGB (3 channels) will have a bit-depth of 8 for each channel and hence

has a total bit-depth of 24. Similarly, a TIFF microscope image with

5 channels (say) with each channel at 16-bit depth will have a total

bit-depth of 80.

3.2.2 Pixel and Voxel

A pixel in an image can be thought of as a bucket that collects light

or electrons depending on the type of detector used. A single pixel in

an image spans a distance in the physical world. For example, in Figure

3.2, the arrows indicate the width and height of a pixel placed adjacent

to three other pixels. In this case, the width and height of this pixel

is 0.5 mm. Thus in a physical space, traversing a distance of 0.5 mm

is equivalent to traversing 1 pixel in the pixel space. For all practical

purposes, we can assume that detectors have square pixels, i.e., the

pixel width and pixel height are the same.

The pixel size could be different for different imaging modalities

and different detectors. For example, the pixel size is greater for CT

compared to micro-CT.

In medical and microscope imaging, it is more common to acquire

3D images. In such cases, the pixel size will have a third dimension,
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FIGURE 3.2: Width and height of pixel in physical space.

namely the pixel depth. The term pixel is generally applied to 2D and

is replaced by voxel in 3D images.

Most of the common image formats like DICOM, nifti, and some

microscope image formats contain the voxel size in their header. Hence,

when such images are read in a visualization or image processing pro-

gram, an accurate analysis and visualization can be performed. But if

the image does not have the information in the header or if the visual-

ization or image processing program cannot read the header properly,

it is important to use the correct voxel size for analysis.

Figure 3.3 illustrates the problem of using an incorrect voxel size in

visualization. The left image is the volume rendering of an optical coher-

ence tomography image with incorrect voxel size in the z-direction. The

right image is the volume rendering of the same image with correct voxel

size. In the left image, it can be seen clearly that the object is highly

elongated in the z-direction. In addition, the undulations at the top

of the volume and the five hilly structures at the top are also made

prominent by the incorrect voxel size. The right image has the same

shape and size as the original object. The problem not only affects

visualization but also any measurements performed on the volume.
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(a) Volume rendering
with incorrect voxel size.
The 3D is elongated in
the z-direction.

(b) Volume rendering with
correct voxel size.

FIGURE 3.3: An example of volume rendering with correct and incor-
rect voxel size.

3.2.3 Image Histogram

A histogram is a graphical depiction of the distribution of pixel

value in an image. The image in Figure 3.4 is a histogram of an image.

The x-axis is the pixel value and the y-axis is the frequency or the

number of pixels with the given pixel value. In the case of an integer-

based image such as JPEG, whose values span [0, 255], the number of

values in the x-axis will be 256. Each of these 256 values is referred to

as a “bin.” Several bins can also be used in the x-axis. In the case of

images containing floating-point values, the bins will have a range of

values.

Histograms are a useful tool in determining the quality of the image.

A few observations can be made in Figure 3.4:

1. The left side of the histogram corresponds to lower pixel values.

Hence if the frequency at lower pixel values is very high, it indi-

cates that some of the pixels might be missing from that end,
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FIGURE 3.4: An example of a histogram.

i.e., there are values farther left of the first pixel that were not

recorded in the image.

2. An ideal histogram should have close to zero frequency for the

lower pixel values.

3. The right side of the histogram corresponds to higher pixel values.

Hence, if the frequency at higher pixel values is very high, it

indicates saturation, i.e., there might be some pixels to the right

of the highest value that were never recorded.

4. An ideal histogram should have close to zero frequency for the

higher pixel values.

5. The above histogram is bi-modal. The trough between the two

peaks is the pixel value that can be used for segmentation by

thresholding. But not all images have bi-modal histograms; hence

there are many techniques for segmentation using histograms. We

will discuss some of these techniques in Chapter 8, “Segmenta-

tion.”

3.2.4 Window and Level

The human eye can view a large range of intensity values, while

modern displays are severely limited in their capabilities.
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FIGURE 3.5: Window and level.

Image viewing applications display the pixel value after a suitable

transformation due to the fact that displays have a lower intensity

range than the intensity range in an image. One example of the trans-

formation, namely window-level, is shown in Figure 3.5. Although the

computer selects a transformation, the user can modify it by chang-

ing the window range and the level. The window allows modifying the

contrast of the display while the level changes the brightness of the

display.

3.2.5 Connectivity: 4 or 8 Pixels

The usefulness of this section will be more apparent with the dis-

cussion of convolution in Chapter 7, “Fourier Transform.” During the

convolution operation, a mask or kernel is placed on top of an image

pixel. The final value of the output image pixel is determined using a

linear combination of the value in the mask and the pixel value in the

image. The linear combination can be calculated for either 4-connected

pixels or 8-connected pixels. In the case of 4-connected pixels shown in

Figure 3.6, the process is performed on the top, bottom, left and right

pixels. In the case of 8-connected pixels, the process is performed in

addition on the top-left, top-right, bottom-left and bottom-right pixels.
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FIGURE 3.6: An example of 4 and 8 pixel connectivity.

3.3 Image Types

There are more than 100 image formats. Some of these formats,

such as JPEG, GIF, PNG, etc., are used for photographic images. For-

mats such as DICOM, NIFTI, and Analyze AVW are used in medical

imaging. Formats such as TIFF, ICS, IMS, etc., are used in microscope

imaging. In the following sections, we discuss some of these formats.

3.3.1 JPEG

JPEG stands for the Joint Photographic Experts Group, a joint

committee formed to add images to text terminals. Its extension is .jpg

or .jpeg. It is one of the most popular formats due to its ability to

compress the data significantly with minimal visual loss. In the ini-

tial days of the World Wide Web, JPEG became popular as it helped

save bandwidth in image data transfer. It is a lossy format, that com-

presses data using Discrete Cosine Transform (DCT). The parameters

of compression can be tuned to minimize the loss in detail. Since JPEG

stores image data after transforming them using DCT, it is not very

suitable for storing images that contain fine structures such as lines,

curves, etc. Such images are better stored as PNG or TIFF. The JPEG

images can be viewed using viewers that are built into most computers.

Since JPEG images can be compressed, image standards such as TIFF
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and DICOM may use JPEG compression to store the image data when

compression is needed.

3.3.2 TIFF

TIFF stands for Tagged Image File Format. Its extension is .tif or

.tiff. The latest version of the TIFF standards is 6.0. It was created in

the 80’s for storing and encoding scanned documents. It was developed

by Aldus Corporation, which was later acquired by Adobe Systems.

Hence, the copyright for TIFF standards is held by Adobe Systems.

Originally it was developed for single-bit data but today’s standards

allow storage of 16-bit and even floating-point data. Charged Couple

Device (CCD) cameras used in scientific experiments acquire images at

more than 12-bit resolution and hence TIFF images that store high pre-

cision are used extensively. The TIFF images can be stored internally

using JPEG lossy compression or can be stored with lossless compres-

sion such as LZW.

It is popular in the microscope community for the fact that it has

higher bit-depth (> 12 bits) per pixel per channel and also for its abil-

ity to store a sequence of images in a single TIFF file. The latter is

sometimes referred as 3D TIFF. Most of the popular image processing

software for the microscope community can read most forms of TIFF

images. Simple TIFF images can be viewed using viewers built into

most computers. The TIFF images generated from scientific experi-

ments are best viewed using applications that are specialized in that

domain.

3.3.3 DICOM

Digital Imaging and Communication in Medicine (DICOM) is a

standard format for encoding and transmitting medical CT and MRI

data. This format stores the image information along with other data

like patient details, acquisition parameters etc. DICOM images are used

by doctors in various disciplines such as radiology, neurology, surgery,

cardiology, oncology, etc. There are more than 20 DICOM committees
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that meet and update the standards 4 or 5 times a year. It is managed

by the National Electrical Manufacturers Association (NEMA), which

owns the copyright of the DICOM standards.

DICOM format uses tested tools such as JPEG, MPEG, TCP/IP

for its internal working. This allows easier deployment and creation of

DICOM tools. DICOM standards also define the transfer of images,

storage, and other allied workflows. Since DICOM standards have

become popular, many image processing readers and viewers have been

created to read, process and write images.

DICOM images have header as well as image data similar to

other image formats. But, unlike other format headers, the DICOM

header contains not only information about the size of the image, pixel

size, etc., but also patient information, physician information, imag-

ing parameters, etc. The image data may be compressed using various

techniques like JPEG, lossless JPEG, run length encoding (RLE), etc.

Unlike other formats, DICOM standards define both the data format

and also the protocol for transfer.

The listing below is a partial example of a DICOM header. The

patient and doctor information have been either removed or altered for

privacy. Section 0010 contains patient information, section 0009 details

the CT machine used for acquiring the image, and section 0018 details

the parameter of acquisition, etc.

0008,0022 Acquisition Date: 20120325

0008,0023 Image Date: 20120325

0008,0030 Study Time: 130046

0008,0031 Series Time: 130046

0008,0032 Acquisition Time: 130105

0008,0033 Image Time: 130108

0008,0050 Accession Number:

0008,0060 Modality: CT

0008,0070 Manufacturer: GE MEDICAL SYSTEMS

0008,0080 Institution Name: ----------------------



Image and Its Properties 47

0008,0090 Referring Physician's Name: XXXXXXX

0008,1010 Station Name: CT01_OC0

0008,1030 Study Description: TEMP BONE/ST NECK W

0008,103E Series Description: SCOUTS

0008,1060 Name of Physician(s) Reading Study:

0008,1070 Operator's Name: ABCDEF

0008,1090 Manufacturer's Model Name: LightSpeed16

0009,0010 ---: GEMS_IDEN_01

0009,1001 ---: CT_LIGHTSPEED

0009,1002 ---: CT01

0009,1004 ---: LightSpeed16

0010,0010 Patient's Name: XYXYXYXYXYXYX

0010,0020 Patient ID: 213831

0010,0030 Patient's Birth Date: 19650224

0010,0040 Patient's Sex: F

0010,1010 Patient's Age:

0010,21B0 Additional Patient History:

? MASS RIGHT EUSTACHIAN TUBE

0018,0022 Scan Options: SCOUT MODE

0018,0050 Slice Thickness: 270.181824

0018,0060 kVp: 120

0018,0090 Data Collection Diameter: 500.000000

0018,1020 Software Versions(s): LightSpeedverrel

0018,1030 Protocol Name: 3.2 SOFT TISSUE NECK

0018,1100 Reconstruction Diameter:

0018,1110 Distance Source to Detector: 949.075012

0018,1111 Distance Source to Patient: 541.000000

0018,1120 Gantry/Detector Tilt: 0.000000

0018,1130 Table Height: 157.153000

0018,1140 Rotation Direction: CW

0018,1150 Exposure Time: 2772

0018,1151 X-ray Tube Current: 10

0018,1152 Exposure: 27
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0018,1160 Filter Type: BODY FILTER

0018,1170 Generator Power: 1200

0018,1190 Focal Spot(s): 0.700000

0018,1210 Convolution Kernel: STANDARD

The various software that can be used to manipulate DICOM

images can be found online. We will classify these software based on

the user requirements.

The user might need:

1. A simple viewer with limited manipulation like ezDICOM

[Ror20].

2. A viewer with ability to manipulate images and perform rendering

like Osirix [SAR20].

3. A viewer with image manipulation capability and also extensible

with plugins like ImageJ.

1. ezDICOM: This is a viewer that provides sufficient functionality

that allows users to view and save DICOM files without installing

any other complex software in their system. It is available only

for Windows OS. It can read DICOM files and save them in other

file formats. It can also convert image files to analyze format.

2. Osirix: This is a viewer with extensive functionality and is avail-

able free, but unfortunately it is available only in MacOSX. Like

other DICOM viewers, it can read and store files in different file

formats and as movies. It can perform Multi-Planar Reconstruc-

tion (MPR), 3D surface rendering, 3D volume rendering, and

endoscopy. It can also view 4D DICOM data. The surface ren-

dered data can also be stored as VRML, STL files, etc.

3. ImageJ: ImageJ was funded by the National Institutes of Health

(NIH) and is available as open source. It is written in Java and

users can add their own Java classes or plugins. It is available
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in all major operating system like Windows, Linux, UNIX, Mac,

etc. It can read all DICOM formats and can store the data in

various common file formats and also as movies. The plugins allow

various image processing operations. Since the plugins can be

easily added, the complexity of the image processing operation

is limited only by the user’s knowledge of Java. Since ImageJ

is a popular image processing software, a brief introduction is

presented in Appendix C, “Introduction to ImageJ.”

3.4 Data Structures for Image Analysis

Image data is generally stored as a mathematical matrix. So in

general, a 2D image of size 1024-by-1024 is stored in a matrix of the

same size. Similarly, a 3D image is stored in a 3D matrix. In numpy, a

mathematical matrix is called a numpy array. As we will be discussing

in the subsequent chapters, the images are read and stored as a numpy

array and then processed using either functions in a Python module or

user-defined functions.

Since Python is a dynamically typed language (i.e., no defining data

type), it will determine the data type and size of the image at run time

and store appropriately.

3.5 Reading, Writing and Displaying Images

3.5.1 Reading Images

After a lot of research, we decided to use Python’s computer vision

module, OpenCV [Ope20a] for reading and writing images, the PIL

module’s Image for reading images, and Matplotlib’s pyplot to display

images.
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OpenCV is imported as cv2. We use imread function to read an

image, which returns an ndarray. The cv2.imread supports the following

file formats:

• Windows bitmaps: bmp, dib

• JPEG files: jpeg, jpg, jpe

• JPEG 2000 files: jp2

• Portable Network Graphics: png

• Portable image format: pbm, pgm, ppm

• TIFF files: tiff, tif

Below is the cv2’s code snippet for reading images.

import cv2

# Reading image and converting it into an ndarray

img = cv2.imread('Picture1.png')

# Converting img to grayscale

img_grayscale = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

We import cv2 and use the cv2.imread function to read the image

as an ndarray. To convert a color image to grayscale, we use the

function cvtColor whose first argument is the ndarray of an image

and the second argument is cv2.COLOR BGR2GRAY. This argument,

cv2.COLOR BGR2GRAY, converts an RGB image, which is a three-

channel ndarray to grayscale, which is a single-channel ndarray using

the following formula:

y = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B (3.1)

Another way to read images would be using PIL module’s Image

class. Below is the code snippet for reading images using PIL’s Image.
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from PIL import Image

import numpy as np

# Reading image and converting it into grayscale.

img = Image.open('Picture2.png').convert('L')

# convert PIL Image object to numpy array

img = np.array(img)

# Performing image processing on img.

img2 = image_processing(img)

# Converting ndarray to image for saving using PIL.

im3 = Image.fromarray(img2)

In the above code, we import Image from the PIL module. We open

the ’Picture.png’ image and convert a three-channel image to a single-

channel grayscale by using convert(’L’) and the result is a PIL Image

object. We then convert this PIL Image object to a numpy ndarray

using the np.array function because most image processing modules in

Python can only handle a numpy array and not a PIL Image object.

After performing some image processing operation on this ndarray, we

convert the ndarray back to an image using Image.fromarray, so that

it can be saved or visualized.

3.5.2 Reading DICOM Images using pyDICOM

We will use pyDICOM [Mas20], a module in Python to read or write

or manipulate DICOM images. The process for reading DICOM images

is similar to JPEG, PNG, etc. Instead of using cv2, the pyDICOM

module is used. The pyDICOM module is not installed by default in the

distributions. Please refer to the pyDICOM documentation at [Mas20].

To read a DICOM file, the DICOM module is first imported. The file

is then read using the “read file” function.

import dicom

ds = dicom.read_file("ct_abdomen.dcm")
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3.5.3 Writing Images

Throughout this book, to write or save images we will use

cv2.imwrite. The cv2.imwrite function supports the following file for-

mats:

• JPEG files: *.jpeg, *.jpg, *.jpe

• Portable Network Graphics: *.png

• Portable image format: *.pbm, *.pgm, *.ppm

• TIFF files: *.tiff, *.tif

Here is an example code snippet where we read an image and write

an image. The imwrite function takes the file name and the ndarray of

an image as input. The file format is identified using the file extension

in the file name.

import cv2

img = cv2.imread('image1.png')

# cv2.imwrite will take an ndarray.

cv2.write('file_name', img)

In the subsequent chapters, we will continue to use the above

approach for writing or saving images.

3.5.4 Writing DICOM Images using pyDICOM

To write a DICOM file, the DICOM module is first imported. The

file is then written using the “write file” function. The input to the

function is the name of the DICOM file and also the array that needs

to be stored.

import dicom

datatowrite = ...

dicom.write_file("ct_abdomen.dcm",datatowrite)
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3.5.5 Displaying Images

Throughout this book, to display images, we will use Mat-

plotlib.pyplot. Below is a sample code snippet that reads and displays

an image.

import cv2

import matplotlib.pyplot as plt

# cv2.imread will read the image and convert it into an

ndarray.

img = cv2.imread('image1.png')

# We import matplotlib.pyplot to display an image in

grayscale.

# If gray is not supplied the image will be displayed

in color.

plt.imshow(img, 'gray')

plt.show()

We are importing cv2 and matplotlib.pyplot modules. Notice that

we are aliasing matplotlib.pyplot as plt. We use cv2.imread to read

an image and we use plt.imshow to display the image. As we want

a grayscale image to be displayed, we provide a string ’gray’ to the

plt.imshow function.

Note: We can also display a DICOM image using plt.imshow

because pyDICOM’s read file also returns a data object that contains

the image data as an ndarray.

3.6 Programming Paradigm

As described in the introductory section, the workflow (Figure 3.1)

for image processing begins with reading an image and finally ends with
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either writing the image to file or visualizing it. The image processing

operations are performed between the reading and writing or visualizing

the image. In this section, the code snippet that will be used for reading

and writing or visualizing the image is presented. This code snippet will

be used in most of the programs presented in this book.

Below is a sample code where cv2 and matplotlib are used.

# cv2 module's imread to read an image as an ndarray.

# cv2 module's imwrite to write an image.

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('image1.png')

# Converting img to grayscale (if needed).

img_grayscale = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# We process img_grayscale and obtain img_processed.

# The function image_processing can perform any image

# processing or computer vision operation

img_processed = image_processing(img_grayscale)

# cv2.imwrite will take an ndarray and store it.

cv2.write('file_name.png', img_processed)

# We import matplotlib.pyplot to display an image in

grayscale.

plt.imshow(img_processed, 'gray')

plt.show()

In the above code, the cv2 module is imported. Then matplotlib

.pyplot is imported as plt. We use cv2.imread to read image1.png

and return an ndarray. We use cv2.cvtColor along with the argument

cv2.COLOR BGR2GRAY to convert img, which is a three-channel

ndarray to a single-channel ndarray and we store it in img grayscale.
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We perform some image processing (assuming that the function

image processing already exists) on img grayscale and we assign it

to img processed. We save img processed using cv2.write, which con-

verts the ndarray to an image. To visualize, we use plt.imshow. The

plt.imshow function takes the ndarray as a necessary input argument

and image type as an optional argument. In this case, for image type,

we chose gray.

Below is another sample code where PIL and matplotlib are used

instead of cv2 for reading and writing images.

# PIL module to read and save an image.

from PIL import Image

import matplotlib.pyplot as plt

# Opening image and converting it into grayscale.

img = Image.open('image2.png').convert('L')

# convert PIL Image object to numpy array

img = np.array(img)

# We process img_grayscale and obtain img_processed

img_processed = image_processing(img)

# Converting ndarray to a PIL Image.

img_out = Image.fromarray(img_processed)

# Save the image to a file.

img_out.save('file_name.png')

# Display the image in grayscale

plt.imshow(img_processed, 'gray')

plt.show()

In the above code, Image class is imported from PIL. Then matplotlib

is imported as plt. We use Image.open to read the image and in the

same line, using convert(’L’), the image is converted from a three-channel
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image to a single-channel Image object. We use the np.array function

to convert the PIL image to ndarray. We then perform some image pro-

cessing (assuming that the function image processing already exists) on

img and we assign it to img processed. We use Image.fromarrray to con-

vert img processed, which is an ndarray, to a PIL Image object. We save

img processed using the save method in the PIL Image class. To visual-

ize, we use plt.imshow. The plt.imshow function takes the ndarray as a

necessary input argument and image type as an optional argument. In

this case, for image type, we chose gray.

3.7 Summary

• Image processing is preceded by reading an image file. It is then

followed by either writing the image to file or visualization.

• An image is stored generally in the form of matrices. In Python,

it is processed as a numpy n-dimensional array or ndarray.

• An image has various properties like bit-depth, pixel/voxel size,

histogram, window-level, etc. These properties affect the visual-

ization and processing of images.

• There are hundreds of image formats created to serve the needs

of the image processing community. Some of these formats like

JPEG, PNG, etc. are used generally for photographs while

DICOM, Analyze AVW, and NIFTI are used for medical image

processing.

• In addition to processing these images, it is important to view

these images using graphical tools such as ezDicom, Osirix,

ImageJ, etc.

• Reading and writing images can be performed using many meth-

ods. One such method was presented in this chapter. We will

continue to use this method in all the subsequent chapters.
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3.8 Exercises

1. An image of size 100-by-100 has isotropic pixel size of 2-by-2

microns. The number of pixels in the foreground is 1000. What

is the area of the foreground and background in microns2?

2. A series of images are used to create a volume of data. There are

100 images each of size 100-by-100. The voxel size is 2-by-2-by-2

microns. Determine the volume of the foreground in microns3

given the number of pixels in the foreground is 10,000.

3. A histogram plots the frequency of occurrence of the various pixel

values. This plot can be converted to a probability density func-

tion or pdf, so that the y-axis is the probability of the various

pixel values. How can this be accomplished?

4. To visualize window or level, open an image in any image pro-

cessing software (such as ImageJ). Adjust window and level. Com-

ment on the details that can be seen for different values of window

and level.

5. There are specialized formats for microscope images. Conduct

research on these formats.
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Chapter 4

Spatial Filters

4.1 Introduction

So far we have covered the basics of Python and its scientific mod-

ules. In this chapter, we begin our journey of learning image processing.

The first concept we will master is filtering, which is at the heart of

image quality and further processing.

We associate filters (such as a water filter) with removing undesir-

able impurities. Similarly, in image processing, a filter removes unde-

sirable impurities which includes noise. In some cases, the impurities

might be visually distracting and in some cases might produce error in

further processing. Some filters are also used to suppress certain fea-

tures in an image and highlight others. For example, the first derivative

and second derivative filters that we will discuss are used to determine

or enhance edges in an image.

There are two types of filters: linear filters and non-linear filters.

Linear filters include mean, Laplacian and Laplacian of Gaussian. Non-

linear filters include median, maximum, minimum, Sobel, Prewitt and

Canny filters.

Image enhancement can be accomplished in two domains: spatial

and frequency. The spatial domain constitutes all the pixels in an image.

Distances in the image (in pixels) correspond to real distances in micro-

meters, inches, etc. The domain over which the Fourier transformation

of an image ranges is known as the frequency domain of the image. We

begin with image enhancement techniques in the spatial domain. Later

61
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in Chapter 7, “Fourier Transform,” we will discuss image enhancement

using frequency or Fourier domain.

The Python modules that are used in this chapter are scikits and

scipy. Scipy documentation can be found at [Sci20c], scikits documen-

tation can be found at [Sci20a], and scipy ndimage documentation can

be found at [Sci20d].

4.2 Filtering

As a water filter removes impurities, an image processing filter

removes undesired features (such as noise) from an image. Each fil-

ter has a specific utility and is designed to either remove a type of

noise or to enhance certain aspects of the image. We will discuss many

filters along with their purposes and their effects on images.

For filtering, a filter or mask is used. It is usually a two-dimensional

square window that moves across the image affecting only one pixel at a

time. Each number in the filter is known as a coefficient. The coefficients

in the filter determine the effects of the filter and consequently the

output image. Let us consider a 3-by-3 filter, F, given in Table 4.1.

TABLE 4.1: A 3-by-3 filter.

F1 F2 F3

F4 F5 F6

F7 F8 F9

If (i, j) is the pixel in the image, then a sub-image around (i, j) of

the same dimension as the filter is considered for filtering. The center of

the filter is placed to overlap with (i, j). The pixels in the sub-image are

multiplied with the corresponding coefficients in the filter. This yields

a matrix of the same size as the filter. The matrix is simplified using

a mathematical equation to obtain a single value that will replace the
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pixel value in (i, j) of the image. The exact nature of the mathematical

equation depends on the type of filter. For example, in the case of a

mean filter, the value of Fi = 1
N , where N is the number of elements

in the filter. The filtered image is obtained by repeating the process

of placing the filter on every pixel in the image, obtaining the single

value and replacing the pixel value in the original image. This process

of sliding a filter window over an image is called convolution in the

spatial domain.

Let us consider the following sub-image from the image, I, centered

at (i, j)

TABLE 4.2: A 3-by-3 sub-image.

I(i− 1, j − 1) I(i− 1, j) I(i− 1, j + 1)
I(i, j − 1) I(i, j) I(i, j + 1)

I(i+ 1, j − 1) I(i+ 1, j) I(i+ 1, j + 1)

The convolution of the filter given in Table 4.1 with the sub-image

in Table 4.2 is given as follows:

Inew(i, j) = F1 ∗ I(i− 1, j − 1) + F2 ∗ I(i− 1, j) + F3 ∗ I(i− 1, j + 1)

+ F4 ∗ I(i, j − 1) + F5 ∗ I(i, j) + F6 ∗ I(i, j + 1)

+ F7 ∗ I(i+ 1, j − 1) + F8 ∗ I(i+ 1, j) + F9 ∗ I(i+ 1, j + 1)

(4.1)

where Inew(i, j) is the output value at location (i, j). This process has

to be repeated for every pixel in the image. Since the filter plays an

important role in the convolution process, the filter is also known as

the convolution kernel.

The convolution operation has to be performed at every pixel in the

image including pixels at the boundary of the image. When the filter is

placed on the boundary pixels, a portion of the filter will lie outside the

boundary. Since the pixel values do not exist outside the boundary, new

values have to be created prior to convolution. This process of creating

pixel values outside the boundary is called padding. The padded pixels
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can be assumed to be either zero or a constant value. Other padding

options such as nearest neighbor or reflect create padded pixels using

pixel values in the image. In the case of zeros, the padded pixels are all

zeros. In the case of constant, the padded pixels take a specific value. In

the case of reflect, the padded pixels take the value of the last row/s or

column/s. The padded pixels are considered only for convolution and

will be discarded after convolution.

Let us consider an example to show different padding options. Fig-

ure 4.1(a) is a 7-by-7 input image to be convolved using a 3-by-5 filter

with the center of the filter at (1, 2). In order to include boundary pix-

els for convolution, we pad the image with one row above and one row

below and two columns to the left and two columns to the right. In

general the size of the filter dictates the number of rows and columns

that will be padded to the image.

• Zero padding: All padded pixels are assigned a value of zero

(Figure 4.1(b)).

• Constant padding: A constant value of 5 is used for all padded

pixels (Figure 4.1(c)). The constant value can be chosen based on

the type of image that is being processed.

• Nearest neighbor: The values from the last row or column (Fig-

ure 4.1(d)) are used for padding.

• Reflect: The values from the last row or column (Figure 4.1(e))

are reflected across the boundary of the image.

• Wrap: In the wrap option given in Figure 4.1(f), the first row

(or column) after the boundary takes the same values as the first

row (or column) in the image and so on.

4.2.1 Mean Filter

In mathematics, functions are classified into two groups, linear and

non-linear. A function f is said to be linear if
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(a) A 7-by-7 input image. (b) Padding with zeros.

(c) Padding with a constant. (d) Padding with nearest
neighbor.

(e) Padding with reflect
option.

(f) Padding with wrap option.

FIGURE 4.1: An example of different padding options.
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f(x+ y) = f(x) + f(y) (4.2)

Otherwise, f is non-linear. A linear filter is an extension of the linear

function.

An excellent example of a linear filter is the mean filter. The coef-

ficients of mean filter F (Table 4.1) are 1’s. To avoid scaling the pixel

intensity after filtering, the whole image is then divided by the number

of pixels in the filter; in the case of a 3-by-3 sub-image we divide it by

9.

Unlike other filters discussed in this chapter, the mean filter does

not have a scipy.ndimage module function. However, we can use the

convolve function to achieve the intended result. The following is the

signature of the Python function for convolve:

scipy.ndimage.filters.convolve(input, weights)

Necessary arguments:

input is a numpy ndarray.

weights is an ndarray consisting of

coefficients of 1s for the mean filter.

Optional arguments:

mode determines the method for handling the array

border by padding. Different options are: constant,

reflect, nearest, mirror, wrap. See above explanation.

cval is a scalar value specified when the mode option

is constant. The default value is 0.0.

origin is a scalar that determines filter origin.

The default value 0 corresponds to a filter
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whose origin (reference pixel) is at the center.

In a 2D case, origin = 0 would mean (0,0).

Returns: output is an ndarray

The program explaining the usage of the mean filter is given below.

The filter (k) is an ndarray array of size 5-by-5 with all values =

1/25. The filter is then convolved using the “convolve” function from

scipy.ndimage.filters.

import cv2

import numpy as np

import scipy.ndimage

# Opening the image using cv2.

a = cv2.imread('../Figures/ultrasound_muscle.png')

# Converting the image to grayscale.

a = cv2.cvtColor(a, cv2.COLOR_BGR2GRAY)

# Initializing the filter of size 5 by 5.

# The filter is divided by 25 for normalization.

k = np.ones((5,5))/25

# performing convolution

b = scipy.ndimage.filters.convolve(a, k)

# Writing b to a file.

cv2.imwrite('../Figures/mean_output.png', b)

Figure 4.2(a) is an ultrasound image of muscle. Notice that the

image contains noise. The mean filter of size 5-by-5 is applied to remove

the noise. The output is shown in Figure 4.2(b). The mean filter effec-

tively removed the noise but in the process blurred the image.



68 Image Processing and Acquisition using Python

(a) Input image for mean filter. (b) Output generated with a mean
filter size (5,5).

FIGURE 4.2: Example of mean filter.

Advantages of the mean filter

• Removes noise.

• Enhances the overall quality of the image, i.e., mean filter bright-

ens an image.

Disadvantages of the mean filter

• In the process of smoothing, the edges get blurred.

• Reduces the spatial resolution of the image.

If the coefficients of the mean filter are not all 1s, then the filter is a

weighted mean filter. In the weighted mean filter, the filter coefficients

are multiplied with the sub-image as in the non-weighted filter. After

application of the filter, the image should be divided by the total weight

for normalization.

4.2.2 Median Filter

Functions that do not satisfy Equation 4.2 are non-linear. The

median filter is one of the most popular non-linear filters. A sliding

window is chosen and is placed on the image at the pixel position (i, j).
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All pixel values under the filter are collected. The median of these values

is computed and is assigned to (i, j) in the filtered image. For example,

consider a 3-by-3 sub-image with values 5, 7, 6, 10, 13, 15, 14, 19, 23.

To compute the median, the values are arranged in ascending order, so

the new list is: 5, 6, 7, 10, 13, 14, 15, 19, and 23. Median is a value

that divides the list into two equal halves; in this case it is 13. So the

pixel (i, j) will be assigned 13 in the filtered image. The median filter

is most commonly used in removing salt-and-pepper noise and impulse

noise. Salt-and-pepper noise is characterized by black and white spots

randomly distributed in an image.

The following is the Python function for the median filter:

scipy.ndimage.filters.median_filter(input, size=None,

footprint=None, mode='reflect', cval=0.0, origin=0)

Necessary arguments:

input is the input image as an ndarray.

Optional arguments:

size can be a scalar or a tuple. For example, if the

image is 2D, size = 5 implies a 5-by-5 filter is

considered. Alternately, the size can also be specified

as size=(5,5).

footprint is a boolean array of the same dimension as

the size unless specified otherwise. The pixels in the

input image corresponding to the points to the

footprint with true values are considered for

filtering.

mode determines the method for handling the array

border by padding. Options are: constant,

reflect, nearest, mirror, wrap.
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Returns: output image as an ndarray.

The Python code for the median filter is given below:

import cv2

import scipy.ndimage

# Opening the image and converting it to grayscale.

a = cv2.imread('../Figures/ct_saltandpepper.png')

# Converting the image to grayscale.

a = cv2.cvtColor(a, cv2.COLOR_BGR2GRAY)

# Performing the median filter.

b = scipy.ndimage.filters.median_filter(a, size=5)

# Saving b as median_output.png in Figures folder

cv2.imwrite('../Figures/median_output.png', b)

In the above code, size = 5 represents a filter (mask) of size 5-

by-5. The image in Figure 4.3(a) is a CT slice of the abdomen with

salt-and-pepper noise. The image is read using ‘cv2.imread’ and the

ndarray returned is passed to the median filter function. The output

of the median filter function is stored as a ‘png’ file. The output image

is shown in Figure 4.3(b). The median filter efficiently removed the

salt-and-pepper noise.

4.2.3 Max Filter

This filter enhances the bright points in an image. In this filter

the maximum value in the sub-image replaces the value at (i, j). The

Python function for the maximum filter has the same arguments as the

median filter discussed above. The Python code for the max filter is

given below.
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(a) Input image for median filter. (b) Output generated with a filter
size=(5,5).

FIGURE 4.3: Example of a median filter.

import scipy.misc

import scipy.ndimage

from scipy.misc.pilutil import Image

# opening the image and converting it to grayscale

a = Image.open('../Figures/wave.png').convert('L')

# performing maximum filter

b = scipy.ndimage.filters.maximum_filter(a, size=5)

# b is converted from an ndarray to an image

b = scipy.misc.toimage(b)

b.save('../Figures/maxo.png')

The image in Figure 4.4(a) is the input image for the max filter. The

input image has a thin black boundary on the left, right and bottom.

After application of the max filter, the white pixels have grown and

hence the thin edges in the input image are replaced by white pixels in

the output image as shown in Figure 4.4(b).
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(a) Input image for max filter. (b) Output image of max filter.

FIGURE 4.4: Example of max filter.

4.2.4 Min Filter

This filter is used to enhance the darkest points in an image. In this

filter, the minimum value of the sub-image replaces the value at (i, j).

The Python function for the minimum filter has the same arguments as

the median filter discussed above. The Python code for the min filter

is given below.

import cv2

import scipy.ndimage

# opening the image and converting it to grayscale

a = cv2.imread('../Figures/wave.png')

# performing minimum filter

b = scipy.ndimage.filters.minimum_filter(a, size=5)

# saving b as mino.png

cv2.imwrite('../Figures/mino.png', b)
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After application of the min filter to the input image in Figure

4.5(a), the black pixels have grown and hence the thin edges in the

input image are thicker in the output image as shown in Figure 4.5(b).

(a) Input image for min filter. (b) Output image of min filter.

FIGURE 4.5: Example of min filter.

4.3 Edge Detection using Derivatives

Edges are a set of points in an image where there is a change of

intensity between one side of that point and the other. From calculus,

we know that the changes in intensity can be measured by using the

first or second derivative. First, let us learn how changes in intensities

affect the first and second derivatives by considering a simple image

and its corresponding profile. This method will form the basis for using

first and second derivative filters for edge detection. Interested readers

can also refer to [MH80],[Mar72],[PK91] and [Rob77].

Figure 4.6(a) is the input image in grayscale. The left side of the

image is dark while the right side is light. While traversing from left

to right, at the junction between the two regions, the pixel intensity
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changes from dark to light. Figure 4.6(b) is the intensity profile across

a horizontal cross-section of the input image. Notice that at the point

of transition from dark region to light region, there is a change in inten-

sity in the profile. Otherwise, the intensity is constant in the dark and

light regions. For clarity, only the region around the point of transition

is shown in the intensity profile (Figure 4.6(b)), first derivative (Figure

4.6(c)), and second derivative (Figure 4.6(d)) profiles. In the transition

region, since the intensity profile is increasing, the first derivative is pos-

itive, while being zero in the dark and light regions. The first derivative

has a maximum or peak at the edge. Since the first derivative is increas-

ing before the edge, the second derivative is positive before the edge.

Likewise, since the first derivative is decreasing after the edge, the sec-

ond derivative is negative after the edge. Also, the second derivative is

zero in dark and light regions as the corresponding first derivative is

zero. At the edge, the second derivative is zero. This phenomenon of

the second derivative changing the sign from positive before the edge

to negative after the edge or vice versa is known as zero-crossing, as it

takes a value of zero at the edge. The input image was simulated on a

computer and does not have any noise. However, acquired images will

have noise that may affect the detection of zero-crossing. Also, if the

intensity changes rapidly in the profile, spurious edges will be detected

by the zero-crossing. To prevent the issues due to noise or rapidly chang-

ing intensity, the image is pre-processed before application of a second

derivative filter.

4.3.1 First Derivative Filters

An image is not a continuous function and hence derivatives are

calculated using discrete approximations and not using functions. For

the purpose of learning, let us look at the definition of the gradient of

a continuous function and then extend it to discrete cases. If f(x, y) is

a continuous function, then the gradient of f as a vector is given by

∇f =

[
fx

fy

]
(4.3)
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(a) Input image. (b) Intensity profile.

(c) First derivative profile. (d) Second derivative profile.

FIGURE 4.6: An example of zero-crossing.

where fx =
∂f

∂x
is known as the partial derivative of f with respect to

x, (change of f along the horizontal direction) and fy =
∂f

∂y
is known

as the partial derivative of f with respect to y, (change of f along the

vertical direction). For more details refer to [Sch04]. The magnitude of

the gradient is a scalar quantity and is given by

|∇f | = [(fx)2 + (fy)
2]

1

2 (4.4)

where |z| is the norm of z.

For computational purposes, we will use the simplified version of

the gradient given by Equation 4.5 and the angle given by Equation

4.6.

|∇f | = |fx|+ |fy| (4.5)

θ = tan−1

(
fy
fx

)
(4.6)
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4.3.1.1 Sobel Filter

One of the most popular first derivative filters is the Sobel filter.

The Sobel filter or mask is used to find horizontal and vertical edges as

given in Table 4.3.

TABLE 4.3: Sobel masks for horizontal and vertical edges.

−1 −2 −1
0 0 0
1 2 1

−1 0 1
−2 0 2
−1 0 1

To understand how filtering is performed, let us consider a sub-

image of size 3-by-3 given in Table 4.4 and multiply the sub-image

with horizontal and vertical Sobel masks. The corresponding output is

given in Table 4.5.

TABLE 4.4: A 3-by-3 subimage.

f1 f2 f3

f4 f5 f6

f7 f8 f9

TABLE 4.5: Output after multiplying the sub-image with Sobel masks.

−f1 −2f2 −f3

0 0 0
f7 2f8 f9

−f1 0 f3

−2f4 0 2f6

−f7 0 f8

Since fx is the partial derivative of f in the x direction, which is a

change of f along the horizontal direction, the partial derivative can be

obtained by taking the difference between the third row and the first

row in the horizontal mask, so fx = (f7 + 2f8 + f9) + (−f1 − 2f2 − f3).

Likewise, fy is the partial derivative of f in the y direction, which

is a change of f in the vertical direction; the partial derivative can be

obtained by taking the difference between the third column and the first

column in the vertical mask, so fy = (f3 + 2f6 + f9) + (−f1− 2f4− f7).
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Using fx and fy f5, the discrete gradient at f5 (Equation 4.7) can

be calculated.

|f5| = |f7 +2f8 +f9−f1−2f2−f3|+ |f3 +2f6 +f9−f1−2f4−f7| (4.7)

The important features of the Sobel filter are:

• The sum of the coefficients in the mask image is 0. This means

that the pixels with constant grayscale are not affected by the

derivative filter.

• The side effect of derivative filters is creation of additional noise.

Hence, coefficients of +2 and −2 are used in the mask image to

produce smoothing.

The following is the Python function for the Sobel filter:

scipy.ndimage.sobel(image)

Necessary arguments:

image is an ndarray with one or three channels.

Returns: output is an ndarrray.

The Python code for the Sobel filter is given below.

import cv2

from scipy import ndimage

# Opening the image.

a = cv2.imread('../Figures/cir.png')

# Converting a to grayscale .

a = cv2.cvtColor(a, cv2.COLOR_BGR2GRAY)
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# Performing Sobel filter.

b = ndimage.sobel(a)

# Saving b.

cv2.imwrite('../Figures/sobel_cir.png', b)

As can be seen in the code, the image, ’cir.png’ is read using

cv2.imread. The ndarray ‘a’ is then passed to the scipy.ndimage.sobel

function to produce the Sobel edge enhanced image which is then writ-

ten to file.

4.3.1.2 Prewitt Filter

Another popular first derivative filter is Prewitt [Pre70]. The masks

for the Prewitt filter are given in Table 4.6.

TABLE 4.6: Prewitt masks for horizontal and vertical edges.

−1 −1 −1
0 0 0
1 1 1

−1 0 1
−1 0 1
−1 0 1

As in the case of the Sobel filter, the sum of the coefficients in

Prewitt is also 0. Hence this filter does not affect pixels with constant

grayscale. However, the filter does not reduce noise like the Sobel filter.

For Prewitt, the Python function’s argument is similar to the Sobel

function’s argument.

Let us consider an example to illustrate the effect of filtering an

image using both Sobel and Prewitt. The image in Figure 4.7(a) is a

CT slice of a human skull near the nasal area. The output of the Sobel

and Prewitt filters is given in Figures 4.7(b) and 4.7(c). Both filters

have successfully created the edge image.

Slightly modified Sobel and Prewitt filters can be used to detect

one or more types of edges. Sobel and Prewitt filters to detect diagonal

edges are given in Tables 4.7 and 4.8.

To detect vertical and horizontal edges for Sobel and Prewitt filters

we will use filters from the module skimage.
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(a) A cross-section of
human skull.

(b) Output of Sobel. (c) Output of Prewitt.

FIGURE 4.7: Example for Sobel and Prewitt.

TABLE 4.7: Sobel masks for diagonal edges.

0 1 2
−1 0 1
−2 −1 0

−2 −1 0
−1 0 1
0 1 2

TABLE 4.8: Prewitt masks for diagonal edges.

0 1 1
−1 0 1
−1 −1 0

−1 −1 0
−1 0 1
0 1 1

• The function filters.sobel v computes vertical edges using the

Sobel filter.

• The function filters.sobel h computes horizontal edges using the

Sobel filter.

• The function filters.prewitt v computes vertical edges using the

Prewitt filter.

• The function filters.prewitt h computes horizontal edges using the

Prewitt filter.

For example, for vertical edge detection, use prewitt v and the

Python function definition is:
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from skimage import filters

# The input to filter.prewitt_v has to be a numpy array.

filters.prewitt_v(image)

Figure 4.8 is an example of detection of horizontal and vertical edges

using the Sobel and Prewitt filters. The vertical Sobel and Prewitt

filters have enhanced all the vertical edges, while the corresponding

horizontal filters enhanced the horizontal edges and the regular Sobel

and Prewitt filters enhanced all edges.

4.3.1.3 Canny Filter

Another popular filter for edge detection is the Canny filter or

Canny edge detector [Can86]. This filter uses three parameters to detect

edges. The first parameter is the standard deviation, σ, for the Gaus-

sian filter. The second and third parameters are the threshold values, t1

and t2. The Canny filter can be best described by the following steps:

1. A Gaussian filter is used on the image for smoothing.

2. An important property of an edge pixel is that it will have a

maximum gradient magnitude in the direction of the gradient. So,

for each pixel, the magnitude of the gradient given in Equation 4.5

and the corresponding direction, θ = tan−1

(
fy
fx

)
, are computed.

3. At the edge points, the first derivative will have either a minimum

or a maximum. This implies that the magnitude (absolute value)

of the gradient of the image at the edge points is maximum. We

will refer to these points as ridge pixels. To identify edge points

and suppress others, only ridge tops are retained and other pixels

are assigned a value of zero. This process is known as non-maximal

suppression.
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(a) Input
image.

(b) Output
of Sobel.

(c) Output
of Prewitt.

(d) Output
of vertical
Sobel.

(e) Output
of vertical
Prewitt.

(f) Output
of horizontal
Sobel.

(g) Output
of horizontal
Prewitt.

FIGURE 4.8: Output from vertical, horizontal and regular Sobel and
Prewitt filters.

4. Two thresholds, low threshold and high threshold, are then used

to threshold the ridges. Ridge pixel values help to classify edge

pixels into weak and strong. Ridge pixels with values greater than

the high threshold are classified as strong edge pixels, whereas the

ridge pixels between low threshold and high threshold are called

weak edge pixels.

5. In the last step, the weak edge pixels are 8-connected with strong

edge pixels.
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The Python function that is used for the Canny filter is:

cv2.Canny(image)

Necessary arguments:

input is the input image as an ndarray

Returns: output is an ndarray.

The Python code for the Canny filter is given below. The code does

not need much explanation.

import cv2

# Opening the image.

a = cv2.imread('../Figures/maps1.png')

# Performing Canny edge filter.

b = cv2.Canny(a, 100, 200)

# Saving b.

cv2.imwrite('../Figures/canny_output.png', b)

Figure 4.9(a) is a simulated map consisting of names of geographical

features of Antarctica. The Canny edge filter is used on this input image

to obtain only edges of the letters as shown in Figure 4.9(b). Note that

the edge of the characters are clearly marked in the output.

4.3.2 Second Derivative Filters

As the name indicates, in the second derivative filter, the second

derivative is computed in order to determine the edges. Since it requires

computing the derivative of a derivative image, it is computationally

expensive compared to the first derivative filter.
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(a) Input image for Canny filter. (b) Output of Canny filter.

FIGURE 4.9: Example of Canny filter.

4.3.2.1 Laplacian Filter

One of the most popular second derivative filters is the Laplacian.

The Laplacian of a continuous function is given by:

∇2f =
∂2f

∂x2
+
∂2f

∂y2

where ∂2f
∂x2 is the second partial derivative of f in the x direction rep-

resents a change of
∂f

∂x
along the horizontal direction and

∂2f

∂y2
is the

second partial derivative of f in the y direction represents a change of
∂f

∂y
along the vertical direction. For more details, refer to [Eva10] and

[GT01]. The discrete Laplacian used for image processing has several

versions. Most widely used Laplacian masks are given in Table 4.9.

TABLE 4.9: Laplacian masks.

0 1 0
−1 4 −1
0 −1 0

−1 −1 −1
−1 8 1
−1 −1 −1
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The Python function that is used for the Laplacian along with the

arguments is the following:

scipy.ndimage.filters.laplace(input, output=None,

mode='reflect', cval=0.0)

Necessary arguments:

input is the input image as an ndarray

Optional arguments:

mode determines the method for handling the array

border by padding. Different options are: constant,

reflect, nearest, mirror, wrap.

cval is a scalar value specified when the option for

mode is constant. The default value is 0.0.

origin is a scalar that determines origin of the

filter. The default value 0 corresponds to a filter

whose origin (reference pixel) is at the center. In a

2D case, origin = 0 would mean (0,0).

Returns: output is an ndarray

The Python code for the Laplacian filter is given below. The Lapla-

cian is called using the scipy laplace function along with the optional

mode for handling array borders.

import cv2

import scipy.ndimage

# Opening the image.
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a = cv2.imread('../Figures/imagefor_laplacian.png')

# Performing Laplacian filter.

b = scipy.ndimage.filters.laplace(a,mode='reflect')

cv2.imwrite('../Figures/laplacian_new.png',b)

The black-and-white image in Figure 4.10(a) is a segmented CT

slice of a human body across the rib cage. The various blobs in the

image are the ribs. The Laplacian filter obtained the edges without any

artifact.

(a) Input image for Laplacian (b) Output of Laplacian

FIGURE 4.10: Example of the Laplacian filter.

As discussed earlier, a derivative filter adds noise to an image. The

effect is magnified when the first derivative image is differentiated again

(to obtain a second derivative) as in the case of second derivative filters.

Figure 4.11 displays this effect. The image in Figure 4.11(a) is an MRI

image from a brain scan. As there are several edges in the input image,

the Laplacian filter over-segments the object (creates many edges) as

seen in the output, Figure 4.11(b). This results in a noisy image with

no discernible edges.



86 Image Processing and Acquisition using Python

(a) Input image (b) Output image

FIGURE 4.11: Another example of Laplacian filter.

4.3.2.2 Laplacian of Gaussian Filter

To offset the noise effect from the Laplacian, a smoothing function,

Gaussian, is used along with the Laplacian. While the Laplacian calcu-

lates the zero-crossing and determines the edges, the Gaussian smooths

the noise induced by the second derivative.

The Gaussian function is given by

G(r) = −e
−r2

2σ2 (4.8)

where r2 = x2 + y2 and σ is the standard deviation. A convolution of

an image with the Gaussian will result in smoothing of the image. The

σ determines the magnitude of smoothing. If σ is large then there will

be more smoothing, which causes sharp edges to be blurred. Smaller

values of σ produce less smoothing.

The Laplacian convolved with Gaussian is known as the Laplacian

of Gaussian and is denoted by LoG. Since the Laplacian is the second

derivative, the LoG expression can be obtained by finding the second

derivative of G with respect to r, which yields
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∇2G(r) = −
(
r2 − σ2

σ4

)
e−

r2

2σ2 (4.9)

The LoG mask or filter of size 5-by-5 is given in Table 4.10.

TABLE 4.10: Laplacian of Gaussian mask

0 0 −1 0 0
0 −1 −2 −1 0
−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0

The following is the Python function for LoG:

scipy.ndimage.filters.gaussian_laplace(input,

sigma, output=None, mode='reflect', cval=0.0)

Necessary arguments:

input is the input image as an ndarray.

sigma a floating point value is the standard deviation

of the Gaussian.

Returns: output is an ndarray

The Python code below shows the implementation of the LoG filter.

The filter is invoked using the gaussian laplace function with a sigma

of 1.

import cv2

import scipy.ndimage

# Opening the image.

a = cv2.imread('../Figures/vhuman_t1.png')

# Performing Laplacian of Gaussian.
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b = scipy.ndimage.filters.gaussian_laplace(a, sigma=1,

mode='reflect')

cv2.imwrite('../Figures/log_vh1.png', b)

Figure 4.12(a) is the input image and Figure 4.12(b) is the out-

put after the application of LoG. The LoG filter was able to deter-

mine the edges more accurately compared to the Laplacian alone (Fig-

ure 4.11(b)). However, the non-uniform foreground intensity has con-

tributed to formation of blobs (a group of connected pixels).

The major disadvantage of LoG is the computational price as two

operations, Gaussian followed by Laplacian, have to be performed.

Even though LoG segments the object from the background, it over-

segments the edges within the object causing closed loops (also called

the spaghetti effect) as shown in the output Figure 4.12(b).

(a) Input image for LoG (b) Output of LoG filter

FIGURE 4.12: Example of LoG.
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4.4 Shape Detecting Filter

4.4.1 Frangi Filter

The Frangi filter [AFFV98] is used to detect vessel-like objects in an

image. We will begin the discussion with the fundamental idea of the

Frangi filter before discussing the math behind it. Figure 4.4.1 contains

two objects. One of the objects is elongated in one direction but not the

other, while the second object is almost square. The orthogonal arrows

are drawn to be proportional to the length along a given direction. This

qualitative geometrical difference can be quantified by finding the eigen

values for these two objects. For the elongated object, the eigen value

will be larger in the direction of the longer arrow and smaller along

the direction of the smaller arrow. On the other hand, for the square

object, the eigen value along the direction of the longer arrow is similar

to the eigen value along the direction of the smaller arrow. The Frangi

filter computes the eigen value on the second derivative (Hessian) image

instead of computing the eigen value on the original image.

FIGURE 4.13: Frangi filter illustration.

To reduce noise due to derivatives, the image is smoothed by con-

volution. Generally, Gaussian smoothing is used. It can be shown

that finding the derivative of Gaussian smoothed convolved image is
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equivalent to finding derivative of a Gaussian convolved with an image.

We will determine the second derivative of Gaussian using the formula

below where gσ is a Gaussian.

Gσ =

[
∂2gσ
∂x2

∂2gσ
∂x∂y

∂2gσ
∂x∂y

∂2gσ
∂y2

]
(4.10)

We will then determine the local second derivative (Hessian) and

its eigen value. For a 2D image, there will be two eigen values (λ1

and λ2) for each pixel coordinate. The eigen values are then sorted

in increasing order. A pixel is considered to be part of a tubular or

vessel-like structure if λ1 ≈ 0 while |λ2| > |λ1|.
For a 3D image, there will be three eigen values (λ1, λ2 and λ3)

for each voxel coordinate. The eigen values are then sorted in increas-

ing order. A voxel is considered to be part of a tubular or vessel-like

structure if λ1 ≈ 0 while λ2 and λ3 are approximately the same high

absolute value and are of the same sign. The bright vessels will have

positive values for λ2 and λ3 while darker vessels will have negative

values for λ2 and λ3.

In the code below, we will demonstrate using the Frangi filter pro-

grammatically. The image is first opened and converted to grayscale.

The image is converted to a numpy array using the np.array function

so that it can be fed to the Frangi filter. Finally, a call is made to the

Frangi filter located in the skimage.filters module. The output of the

frangi function is then saved to a file.

import cv2

import numpy as np

import numpy as np

from PIL import Image

from skimage.filters import frangi

img = cv2.imread('../Figures/angiogram1.png')
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img1 = np.asarray(img)

img2 = frangi(img1, black_ridges=True)

img3 = 255*(img2-np.min(img2))/(np.max(img2)-np.min(img2))

cv2.imwrite('../Figures/frangi_output.png', img3)

The image in Figure 4.14(a) is the input to the Frangi filter and the

image in Figure 4.14(b) is the output of the Frangi filter. The input

image is an angiogram that clearly shows multiple vessels enhanced

by contrast. The output image contains only pixels that are in the

vessel. The contrast of the output image was enhanced for the sake of

publication.

(a) Input image for Frangi filter (b) Output of Frangi filter (image
enhanced for visualization)

FIGURE 4.14: Example of Frangi filter.

4.5 Summary

• The mean filter smooths the image while blurring the edges in

the image.

• The median filter is effective in removing salt-and-pepper noise.
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• The most widely used first derivative filters are Sobel, Prewitt

and Canny.

• Both Laplacian and LoG are popular second derivative filters.

The Laplacian is very sensitive to noise. In LoG, the Gaussian

smooths the image so that the noise from the Laplacian can be

compensated. But LoG suffers from the spaghetti effect.

• The Frangi filter is used for detecting vessel-like structures.

4.6 Exercises

1. Write a Python program to apply a mean filter on an image with

salt-and-pepper noise. Describe the output, including the mean

filter’s ability to remove the noise.

2. Describe how effective the mean filter is in removing salt-and-

pepper noise. Based on your understanding of the median fil-

ter, can you explain why the mean filter cannot remove salt-and-

pepper noise?

3. Can max filter or min filter be used for removing salt-and-pepper

noise?

4. Check the scipy documentation available at

http://docs.scipy.org/doc/scipy/reference/ndimage.html.

Identify the Python function that can be used for creating custom

filters.

5. Write a Python program to obtain the difference of the Laplacian

of Gaussian (LoG). The pseudo code for the program will be as

follows:

(a) Read the image.

http://docs.scipy.org/
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(b) Apply the LoG filter assuming a standard deviation of 0.1

and store the image as im1.

(c) Apply the LoG filter assuming a standard deviation of 0.2

and store the image as im2.

(d) Find the difference between the two images and store the

resulting image?

6. In this chapter, we have discussed a few spatial filters. Identify

two more filters and discuss their properties.



http://taylorandfrancis.com


Chapter 5

Image Enhancement

5.1 Introduction

In previous chapters we discussed image filters. The filter enhances

the quality of an image so that important details can be visualized and

quantified. In this chapter, we discuss a few more image enhancement

techniques. These techniques transform the pixel values in the input

image to a new value in the output image using a mapping function. We

discuss logarithmic transformation, power law transformation, image

inverse, histogram equalization, and contrast stretching. For more infor-

mation on image enhancement refer to [HWJ98],[OR89],[PK81].

5.2 Pixel Transformation

A transformation is a function that maps a set of inputs to a set of

outputs so that each input has exactly one output. For example, T (x) =

x2 is a transformation that maps inputs to corresponding squares of

input. Figure 5.1 illustrates the transformation T (x) = x2 for three

inputs.

In the case of images, a transformation takes the pixel intensities of

the image as an input and creates a new image where the corresponding

pixel intensities are defined by the transformation. Let us consider the

transformation, T (x) = x + 50. When this transformation is applied

95
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FIGURE 5.1: Illustration of transformation T (x) = x2.

to an image, a value of 50 is added to the intensity of each pixel. The

corresponding image is brighter than the input image. Figures 5.2(a)

and 5.2(b) are the input and output images of the transformation,

T (x) = x+ 50.

For a grayscale image, the transformation range is given by [0, L−1]

where L = 2k and k is the number of bits in an image. In the case of

an 8-bit image, the range is [0, 28 − 1] = [0, 255] and for a 16-bit image

the range is [0, 216 − 1] = [0, 65535]. In this chapter we consider 8-

bit grayscale images but the basic principles apply to images of any

bit-depth.



Image Enhancement 97

(a) Input image (b) Output image

FIGURE 5.2: Example of transformation T (x) = x+50. Original image
reprinted with permission from Mr. Karthik Bharathwaj.

5.3 Image Inverse

Image inverse transformation is a linear transformation. The goal is

to transform the dark intensities in the input image to bright intensities

in the output image and vice versa. If the range of intensities is [0, L−1]

for the input image, then the image inverse transformation at (i, j) is

given by the following

t(i, j) = L− 1− I(i, j) (5.1)

where I is the intensity value of the pixel in the input image at (i, j).

For an 8-bit image, the Python code for the image inverse is given

below:

import cv2

# Opening the image.

im = cv2.imread('../Figures/imageinverse_input.png')

# Performing the inversion operation
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im2 = 255 - im

# Saving the image as imageinverse_output.png in

# Figures folder.

cv2.imwrite('../Figures/imageinverse_output.png', im2)

Figure 5.3(a) is a CT image of the region around the heart. Notice

that there are several metal objects, bright spots with streaks, ema-

nating in the image. The bright circular object near the bottom edge

is a rod placed in the spine, while two arch-shaped metal objects are

the valves in the heart. The metal objects are very bright and pre-

vent us from observing other details. The image inverse transformation

suppresses the metal objects while enhancing other features of interest

such as blood vessels, as shown in Figure 5.3(b).

(a) Input (b) Output

FIGURE 5.3: Example of image inverse transformation. Original image
reprinted with permission from Dr. Uma Valeti, Cardiovascular Imag-
ing, University of Minnesota.
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5.4 Power Law Transformation

Power law transformation, also known as gamma-correction, is used

to enhance the quality of the image. The power transformation at (i, j)

is given by

t(i, j) = k I(i, j)γ (5.2)

where k and γ are positive constants and I is the intensity value of the

pixel in the input image at (i, j). In most cases k = 1.

If γ = 1 (Figure 5.4), then the mapping is linear and the output

image is the same as the input image. When γ < 1, a narrow range

of dark or low-intensity pixel values in the input image get mapped

to a wide range of intensities in the output image, while a wide range

of bright or high intensity-pixel values in the input image get mapped

to a narrow range of high intensities in the output image. The effect

from values of γ > 1 is opposite that of values γ < 1. Considering that

the intensity range is between [0, 1], Figure 5.4 illustrates the effect of

different values of γ for k = 1.

The human brain uses gamma-correction to process an image, hence

gamma-correction is a built-in feature in devices that display, acquire,

or publish images. Computer monitors and television screens have built-

in gamma-correction so that the best image contrast is displayed in all

the images.

In an 8-bit image, the intensity values range from [0, 255]. If the

transformation is applied according to Equation 5.2, and for γ > 1

the output pixel intensities will be out of bounds. To avoid this sce-

nario, in the following Python code the pixel intensities are normal-

ized,
I(i, j)

max(I)
= Inorm. For k = 1, replacing I(i, j) with Inorm and then

applying the natural log, ln, on both sides of Equation 5.2 will result in

ln(t(i, j)) = ln(Inorm)γ = γ ∗ ln(Inorm). (5.3)
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FIGURE 5.4: Graph of power law transformation for different γ.

now, basing both sides by e will give us

eln(t(i,j)) = eγ∗ln(Inorm). (5.4)

Since eln(x) = x, the left side in the above equation will simplify to

t(i, j) = eγ∗ln(Inorm). (5.5)

To have the output in the range [0, 255] we multiply the right side of

the above equation by 255 which results in

t(i, j) = eγ∗ln(Inorm) ∗ 255. (5.6)

This transformation is used in the Python code for power law transfor-

mation given below.
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import cv2

import matplotlib.pyplot as plt

import numpy as np

# Opening the image.

a = cv2.imread('../Figures/angiogram1.png')

# gamma is initialized.

gamma = 0.5

# b is converted to type float.

b1 = a.astype(float)

# Maximum value in b1 is determined.

b3 = np.max(b1)

# b1 is normalized

b2 = b1/b3

# gamma-correction exponent is computed.

b4 = np.log(b2)*gamma

# gamma-correction is performed.

c = np.exp(b4)*255.0

# c is converted to type int.

c1 = c.astype(int)

# Displaying c1

plt.imshow(c1)

Figure 5.5(a) is an image of the angiogram of blood vessels. The

image is too bright and it is quite difficult to distinguish the blood

vessels from background. Figure 5.5(b) is the image after gamma cor-

rection with γ = 0.5; the image is brighter compared to the original

image. Figure 5.5(c) is the image after gamma correction with γ = 5;

this image is darker and the blood vessels are visible.
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(a) Input image. (b) Gamma corrected image with
γ = 0.5.

(c) Gamma-corrected image with
γ = 5.

FIGURE 5.5: An example of power law transformation.

5.5 Log Transformation

Log transformation is used to enhance pixel intensities that are

otherwise missed due to a wide range of intensity values or lost at the

expense of high-intensity values. If the intensities in the image range

from [0, L− 1] then the log transformation at (i, j) is given by

t(i, j) = k log(1 + I(i, j)) (5.7)
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where k =
L− 1

log(1 + |Imax|)
and Imax is the maximum magnitude value

and I(i, j) is the intensity value of the pixel in the input image at

(i, j). If both I(i, j) and Imax are equal to L − 1, then t(i, j) = L − 1.

When I(i, j) = 0, since log(1) = 0 will give t(i, j) = 0. While the end

points of the range get mapped to themselves, other input values will

be transformed by the above equation. The log can be of any base;

however, the common log (log base 10) or natural log (log base e)

are widely used. The inverse of the above log transformation when the

base is e is given by t−1(x) = e
x

k − 1, which does the opposite of the

log transformation.

Similar to the power law transformation with γ < 1, the log trans-

formation also maps a small range of dark or low-intensity pixel val-

ues in the input image to a wide range of intensities in the output

image, while a wide range of bright or high-intensity pixel values in

the input image get mapped to narrow range of high intensities in the

output image. Considering the intensity range is between [0, 1], Figure

5.6 illustrates the log and inverse log transformations.

The Python code for log transformation is given below.

import cv2

import numpy, math

# Opening the image.

a = cv2.imread('../Figures/bse.png')

# a is converted to type float.

b1 = a.astype(float)

# Maximum value in b1 is determined.

b2 = numpy.max(b1)

# Performing the log transformation.

c = (255.0*numpy.log(1+b1))/numpy.log(1+b2)

# c is converted to type int.

c1 = c.astype(int)

# Saving c1 as logtransform_output.png.

cv2.imwrite('../Figures/logtransform_output.png', c1)
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FIGURE 5.6: Graph of log and inverse log transformations.

Figure 5.7(a) is a backscattered electron microscope image. Notice

that the image is very dark and the details are not clearly visible.

Log transformation is performed to improve the contrast, to obtain the

output image shown in Figure 5.7(b).

5.6 Histogram Equalization

The histogram of an image was discussed in Chapter 3, “Image and

its Properties.” The histogram of an image is a discrete function, its

input is the gray-level value and the output is the number of pixels with

that gray-level value and can be given as h(xn) = yn. In a grayscale

image, the intensities of the image take values between [0, L − 1]. As

discussed earlier, low gray-level values in the image (the left side of the
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(a) Input (b) Output

FIGURE 5.7: Example of log transformation. Original image reprinted
with permission from Mr. Karthik Bharathwaj.

histogram) correspond to dark regions and high gray-level values in the

image (the right side of the histogram) correspond to bright regions.

In a low-contrast image, the histogram is narrow, whereas in an

image with better contrast, the histogram is spread out. In histogram

equalization, the goal is to improve the contrast of an image by rescaling

the histogram so that the histogram of the new image is spread out

and the pixel intensities range over all possible gray-level values. The

rescaling of the histogram will be performed by using a transformation.

To ensure that for every gray-level value in the input image there is a

corresponding output, a one-to-one transformation is required; that is,

every input has a unique output. This means the transformation should

be a monotonic function. This will ensure that the transformation is

invertible.

Before histogram equalization transformation is defined, the follow-

ing should be computed:

• The histogram of the input image is normalized so that the range

of the normalized histogram is [0, 1].

• Since the image is discrete, the probability of a gray-level value,

denoted by px(i), is the ratio of the number of pixels with a gray
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value i to the total number of pixels in the image. This is generally

called the probability distribution function (PDF).

• The cumulative distribution function (CDF) is defined as C(i) =
i∑

j=0

px(j), where 0 ≤ i ≤ L − 1 and where L is the total number

of gray-level values in the image. The C(i) is the sum of all the

probabilities of the pixel gray-level values from 0 to i. Note that

C is an increasing function.

The histogram equalization transformation can be defined as fol-

lows:

h(u) = round

(
C(u)− Cmin

1− Cmin
∗ (L− 1)

)
(5.8)

where Cmin is the minimum value in the cumulative distribution. For

a grayscale image with range between [0, 255], if C(u) = Cmin then

h(u) = 0. If C(u) = 1 then h(u) = 255. The integer value for the

output image is obtained by rounding Equation 5.8.

Let us consider an example to illustrate the probability, CDF, and

histogram equalization. Figure 5.8 is an image of size 5 by 5. Let us

assume that the gray levels of the image range from [0, 255].

The probabilities, CDF as C for each gray-level value along with the

output of histogram equalization transformation, are given in Figure

5.9.

The Python code for histogram equalization is given below. The

image is read and a flattened image is calculated. The histogram and

the CDF of the flattened image are then computed. The histogram

equalization is then performed according to Equation 5.8. The flattened

image is then passed through the CDF function and then reshaped to

the original image shape.

import cv2

import numpy as np
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FIGURE 5.8: An example of a 5-by-5 image.

FIGURE 5.9: Probabilities, CDF, histogram equalization transforma-
tion.
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# Opening the image.

img1 = cv2.imread('../Figures/hequalization_input.png')

# 2D array is converted to a 1D array.

fl = img1.flatten()

# Histogram and the bins of the image are computed.

hist,bins = np.histogram(img1,256,[0,255])

# cumulative distribution function is computed

cdf = hist.cumsum()

# Places where cdf=0 is masked or ignored and

# rest is stored in cdf_m.

cdf_m = np.ma.masked_equal(cdf,0)

# Histogram equalization is performed.

num_cdf_m = (cdf_m - cdf_m.min())*255

den_cdf_m = (cdf_m.max()-cdf_m.min())

cdf_m = num_cdf_m/den_cdf_m

# The masked places in cdf_m are now 0.

cdf = np.ma.filled(cdf_m,0).astype('uint8')

# cdf values are assigned in the flattened array.

im2 = cdf[fl]

# im2 is 1D so we use reshape command to.

# make it into 2D.

im3 = np.reshape(im2,img1.shape)

# Saving im3 as hequalization_output.png

# in Figures folder

cv2.imwrite('../Figures/hequalization_output.png', im3)

An example of histogram equalization is illustrated in Figure 5.10.

Figure 5.10(a) is a CT scout image. The histogram and CDF of the

input image are given in Figure 5.10(b). The output image after his-

togram equalization is given in Figure 5.10(c). The histogram and CDF

of the output image are given in Figure 5.10(d). Notice that the his-

togram of the input image is narrow compared to the range [0, 255]. The
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leads (bright slender wires running from top to bottom of the image)

are not clearly visible in the input image. After histogram equalization,

the histogram of the output image is spread out over all the values

in the range and subsequently the image is brighter and the leads are

visible.

(a) Input image. (b) Histogram and cdf
of the input image.

(c) Output image. (d) Histogram and cdf of
the output image.

FIGURE 5.10: Example of histogram equalization. Original image
reprinted with permission from Dr. Uma Valeti, Cardiovascular Imag-
ing, University of Minnesota.
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5.7 Contrast Limited Adaptive Histogram Equalization

(CLAHE)

In the above histogram equalization method, observe that the out-

put image in 5.10 is too bright. Instead of using the histogram of the

whole image, in Contrast Limited Adaptive Histogram Equalization

([Zui94]), the image is divided into small regions and a histogram of

each region is computed.

A contrast limit is chosen as a threshold to clip the histogram in

each bin, and the pixels above the threshold are not ignored but rather

distributed to other bins before histogram equalization is applied.

Let us consider the steps involved:

1. Divide the input image into sub-images of size 8-by-8 (say).

2. Calculate the histogram of each sub-image.

3. Find a PDF as described in Section 5.6.

4. Set a threshold to clip the histograms. Then find the CDF as

described in Section 5.6. If the histogram of any bin crosses the

clip limit, then the pixels above the clip limit are uniformly dis-

tributed to other bins. Since the PDF is clipped, the slope of the

CDF will be smaller than the ones in Section 5.6.

5. Apply histogram equalization to each sub-image.

6. Bilinear interpolation is applied to remove artifacts at the bound-

ary of sub-images. We will talk about bilinear interpolation and

other interpolation in Chapter 6.

The following is the Python function for the CLAHE filter:

from skimage.exposure import equalize_adapthist
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equalize_adapthist(img, clip_limit = 0.02)

Necessary arguments:

input is the input image as an ndarray.

Optional arguments:

clip_limit is a floating point number between 0 and 1.

A value close to 1 produces higher contrast.

We read the image, ‘embryo.png’ using cv2. As can be seen in Figure

5.11(a), the contrast of the input image is very poor even though it was

enhanced manually for publishing purposes. The image is then passed

to the equalize adapthist function with a clip limit of 0.02. The image

is scaled to [0, 255] and saved to a file. The output image is displayed

in Figure 5.11(b). As can be seen, the output image contrast is better

than the input image. Also more details can be seen in the output image

compared to the input image.

import cv2

from skimage.exposure import equalize_adapthist

img = cv2.imread('../Figures/embryo.png')

# Applying Clahe.

img2 = equalize_adapthist(img, clip_limit = 0.02)

# Rescaling img2 from 0 to 255.

img3 = img2*255.0

# Saving img3.

cv2.imwrite('../Figures/clahe_output.png', img3)

The authors have experienced that CLAHE is particularly useful for

image enhancement of MV x-ray images such as seen in radiotherapy.
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(a) Input (contrast adjusted man-
ually to show details)

(b) Output

FIGURE 5.11: Example of CLAHE.

5.8 Contrast Stretching

Contrast stretching is similar in idea to histogram equalization

except that the pixel intensities are rescaled using the pixel values

instead of probabilities and CDF. Contrast stretching is used to increase

the pixel value range by rescaling the pixel values in the input image.

Consider an 8-bit image with a pixel value range of [a, b] where a > 0

and b < 255. If a is significantly greater than zero and if b is significantly

smaller than 255, then the details in the image may not be visible. This

problem can be offset by rescaling the pixel value range to [0, 255], a

much larger pixel range.

The contrast stretching transformation, t(i, j) is given by the fol-

lowing equation:

t(i, j) = 255 ∗ I(i, j)− a
b− a

(5.9)

where I(i, j), a, and b are the pixel intensity at (i, j), the minimum pixel

value and the maximum pixel value in the input image respectively.
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Note that if a = 0 and b = 255, then there will be no change in pixel

intensities between the input and the output images.

The image is read and its minimum and maximum values are com-

puted. The image is converted to float, so that the contrast stretching

defined in Equation 5.9 can be performed.

import cv2

# Opening the image.

im = cv2.imread('../Figures/hequalization_input.png')

# Finding the maximum and minimum pixel values

b = im.max()

a = im.min()

print(a,b)

# Converting im1 to float.

c = im.astype(float)

# Contrast stretching transformation.

im1 = 255.0*(c-a)/(b-a+0.0000001)

# Saving im2 as contrast_output.png in

# Figures folder

cv2.imwrite('../Figures/contrast_output2.png', im1)

In Figure 5.12(a) the minimum pixel value in the image is 7 and

the maximum pixel value is 51. After contrast stretching, the output

image (Figure 5.12(b)) is brighter and the details are visible.

In Figure 5.13(a), the minimum pixel value in the image is equal to 0

and the maximum pixel value is equal to 255 so the contrast stretching

transformation will not have any effect on this image as shown in Figure

5.13(b).



114 Image Processing and Acquisition using Python

(a) Input image. (b) Output image.

FIGURE 5.12: An example of contrast stretching where the pixel value
range is significantly different from [0, 255].

(a) Input image. (b) Output image.

FIGURE 5.13: An example of contrast stretching where the input pixel
value range is same as [0, 255].

5.9 Sigmoid Correction

A sigmoid function is defined as

S(x) =
1.0

1 + e−x∗gain
(5.10)

The function (Figure 5.10) asymptotically reaches 0 for low neg-

ative values or reaches 1 asymptotically for high positive values and

is always bound between 0 and 1. In the typical definition of a sig-

moid function, the value of gain is 1. However, in the case of sigmoid
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correction, we will use the gain as a hyper-parameter for fine tuning

the image enhancement.

For a gain of 0.5, the slope of the linear region around x value of 0 is

smaller than the corresponding slope for a gain of 1. Consequently the

saturation of pixel values to either 0 or 1 on either end of the spectrum

will happen only for points that are farther away from 0. However, for

a gain of 2, the saturation point happens close to x = 0. We can use

this property to enhance images.

If we choose a gain of 2, then only pixel values (value along x) close

to 0 will retain their pixel values while pixel values farther away from

0 will either be saturated to 0 or 1. Hence only a pixel around 0 will

be visible with its gray value range.

Instead, if we choose a gain of 0.5, the pixel values farther away

from 0 will retain their gray value range and hence we will visualize a

large range of pixel values in the image.

In a scikit image, the sigmoid correction is performed using the

formula (Equation 5.11),

S(x) =
1.0

1 + e−(cutoff−pixelvalue)∗gain (5.11)

where cutoff is the pixel value around which the sigmoid correction is

performed. The pixel values must be normalized to [0, 1] before per-

forming sigmoid correction. The cutoff value is the center value of the

pixel around which the gray pixel value range is highlighted in the

output image.

The following is the Python function for sigmoid correction.

from skimage.exposure import adjust_sigmoid

adjust_sigmoid(img1, gain=15)

Necessary arguments:

input is the input image as an ndarray.
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FIGURE 5.14: Effect of gain in a sigmoid function.

Optional arguments:

gain is a constant multiplier in exponential’s power

of sigmoid function. The default value is 10.

In the code below, the image is read and converted to a numpy

array. Then sigmoid correction is applied using the “adjust sigmoid”

function with a gain of 15. Since the cutoff is not specified, the default

value of 0.5 will be assumed. A gain of 15 will result in a steep slope in

the linear region around 0 in Figure 5.14. Thus only the central pixel

values will be highlighted and all other pixels farther away from 0 will

be set to either 0 or 1.

import cv2

from skimage.exposure import adjust_sigmoid

# Reading the image.

img1 = cv2.imread('../Figures/hequalization_input.png')
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# Applying Sigmoid correction.

img2 = adjust_sigmoid(img1, gain=15)

# Saving img2.

cv2.imwrite('../Figures/sigmoid_output.png', img2)

The image in Figure 5.15(a) is sigmoid corrected to produce the

output image in Figure 5.15(b). The details of the bones are discernable

in the corrected image as opposed to the original image. The choice of

the cutoff and gain will determine the quality of the output image.

(a) Input (b) Output

FIGURE 5.15: Example of Sigmoid correction.

5.10 Local Contrast Normalization

Local contrast normalization ([JKRL09]) was developed as part of a

computational neural model. The method demonstrates that enhancing

the pixel value at a certain location depends only on its neighboring

pixels and not the ones farther away from it. The method works by

setting the local mean of a pixel to zero and its standard deviation to

1 based on the pixels in the neighborhood.

We begin by creating a difference image (d), computed by finding

the difference (Equation 5.12) between the smoothed version of the
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image and itself. This creates an image whose neighborhood mean is 0.

The difference image is then used to compute the standard deviation

image (Equation 5.13) after applying a Gaussian smoothing. The final

image Iout (Equation 5.14) is created by dividing the difference image

by the maximum between the local mean of the standard deviation

image and the standard deviation image.

d = I ∗ σ1 − I (5.12)

s =
√
d2 ∗ σ2 (5.13)

Iout =
d

max(means, s)
(5.14)

where I is the original image, σ1 and σ2 are the standard deviations

for the Gaussian smoothing, * indicates convolution, and means is the

mean of the image s.

The convolution operation works on pixels neighboring a given pixel

and hence the filter is called a “local contrast normalization.”

The image used for this example is a DICOM image and is read

using the pydicom module. The image is converted to float and scaled

to range [0.0, 1.0].

The “localfilter” function implements the local contrast normal-

ization filter. In the function, the input image is smoothed using a

Gaussian. A new image called ’d’ is created as a difference between the

Gaussian smoothed image and the original image. Since the Gaussian

is a weighted mean of the neighborhood pixels, this operation is equiva-

lent to removing the mean from the neighborhood. The mean-corrected

image, ’d,’ is then squared to obtain the variance and the square root

of the variance provides the standard deviation image ’s’. A new image

max array is created by finding the maximum between the values in

image ’s’ and the mean value of image ’s’. The final image ’y’ is created
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by dividing the image ’d,’ which is similar to mean-corrected image and

the standard deviation image, ’max array’.

import pydicom

import numpy as np

import skimage.exposure as imexp

from matplotlib import pyplot as plt

from scipy.ndimage.filters import gaussian_filter

from PIL import Image

def localfilter(im, sigma=(10, 10,)):

im_gaussian = gaussian_filter(im, sigma=sigma[0])

d = im_gaussian-im

s = np.sqrt(gaussian_filter(d*d, sigma=sigma[1]))

# form an array where all elements have a value of

mean(s)

mean_array = np.ones(s.shape)*np.mean(s)

# find element by element maximum between mean_array

and s

max_array = np.maximum(mean_array, s)

y = d/(max_array+np.spacing(1.0))

return y

file_name = "../Figures/FluroWithDisplayShutter.dcm"

dfh = pydicom.read_file(file_name, force=True)

im = dfh.pixel_array

# convert to float and scale before applying filter

im = im.astype(np.float)

im1 = im/np.max(im)

sigma = (5, 5,)

im2 = localfilter(im, sigma)

# rescale to 8-bit

im3 = 255*(im2-im2.min())/(im2.max()-im2.min())
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im4 = Image.fromarray(im3).convert("L")

im4.save('../Figures/local_normalization_output.png')

im4.show()

The image in Figure 5.16(b) is a local contrast normalized image

produced from the input image in Figure 5.16(a). The details of the

bones are discernable in the output image as opposed to the original

image. In the bright regions outside the anatomy but inside the field

of view, the input image is smooth while the corresponding region in

the output image is noisy. This is due to the fact that we are forcing

regions with low variance (such as smooth regions) and also regions

with high variance to have equal variance. The choice of smoothing is

a hyper-parameter that needs to be chosen based on the image being

processed.

(a) Input (contrast adjusted man-
ually to show details)

(b) Output

FIGURE 5.16: Example of local contrast normalization.

The authors have found that this filter works especially well for

highlighting high-contrast objects surrounded by low-contrast struc-

tures.
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5.11 Summary

• Image inverse transformation is used to invert the pixel intensities

in an image. This process is similar to obtaining a negative of a

photograph.

• Power law transformation makes the image brighter for γ < 1

and darker for γ > 1.

• Log transformation makes the image brighter, while the inverse

log makes the image darker.

• Histogram equalization is used to enhance the contrast in an

image. In this transformation, a narrow range of intensity val-

ues will get mapped to a wide range of intensity values.

• Contrast stretching is used to increase the pixel value range by

rescaling the pixel values in the input image.

• Sigmoid correction provides a smooth continuous function for

enhancing images around a central cutoff.

• Local contrast normalization enhances the pixel value at a certain

location based only on its neighboring pixels and not the ones

farther away from it.

5.12 Exercises

1. Explain briefly the need for image enhancement with some exam-

ples.

2. Research a few other image enhancement techniques.
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3. Consider an image transformation where every pixel value is mul-

tiplied by a constant (K). What will be the effect on the image

assuming K < 1, K = 1 and K > 1? What will be the impact on

the histogram of the output image in relation to the input image?

4. All the transformations discussed in this chapter are scaled from

[0, 1]. Why?

5. The window or level operation allows us to modify the image,

so that all pixel values can be visualized. What is the difference

between window or level and image enhancement?

Clue: One makes a permanent change to the image while the other

does not.

6. An image has all pixel values clustered in the lower intensity.

The image needs to be enhanced, so that the small range of the

low-intensity maps to a larger range. What operation would you

use?

7. In sigmoid correction, the choice of the cutoff and gain will deter-

mine the quality of the output image. The readers are recom-

mended to try different settings for the hyper-parameter to under-

stand their effect.

8. In local contrast normalization, the choice of the σ1 and σ2 affect

the outcome. The readers are recommended to try different values

to understand their effect.
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Affine Transformation

6.1 Introduction

An affine transformation is a geometric transformation that pre-

serves points, lines and planes. It satisfies the following conditions:

• Collinearity: Points which lie on a line before the transformation

continue to lie on the line after the transformation.

• Parallelism: Parallel lines will continue to be parallel after the

transformation.

• Convexity: A convex set will continue to be convex after the trans-

formation.

• Ratios of parallel line segments: The ratio of the length of parallel

line segments will continue to be the same after transformation.

In this chapter, we will discuss the common affine transformation

such as translation, rotation and scaling. We will begin the discus-

sion with the mathematical process to perform affine transformation.

We will follow that with specific examples and code for various affine

transformations. Finally, we will discuss interpolation which affects the

image quality after affine transformation.

123
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6.2 Affine Transformation

The affine transformation is applied as follows:

• Consider every pixel coordinate in the image.

• Calculate the dot product of the pixel coordinate with a trans-

formation matrix. The matrix differs depending on the type of

transformation being performed which will be discussed below.

The dot product gives the pixel coordinate for the transformed

image.

• Determine the pixel value in the transformed image using the

pixel coordinate calculated from the previous step. Since the dot

product may produce non-integer pixel coordinates, we will apply

interpolation (discussed later).

We will discuss the following affine transformation in this chapter.

There are other transformations as well but these are most commonly

used.

• Translation

• Rotation

• Scaling

6.2.1 Translation

Translation is the process of shifting the image along the various

axes (x-, y- and z-axis). For a 2D image, we can perform translation

along one or both axes independently. The transformation matrix for

translation is defined as:

T =

 1 0 0

0 1 0

tx ty 1

 (6.1)
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If we consider a pixel coordinate (x, y, 1) and perform the dot

product with the translation matrix in Equation 6.1, we will obtain the

pixel coordinate of the transformed matrix.

Ctransformed =
(
x y 1

) 1 0 0

0 1 0

tx ty 1

 (6.2)

Ctransformed =
(
x+ tx y + ty 1

)
(6.3)

Thus every pixel in the transformed image is offset by tx and ty

along x and y respectively. The value of tx and ty may be positive or

negative.

The following code implements translation transformation. The

image is read and converted in to a numpy array. The transforma-

tion matrix is created as an instance of the AffineTransform class. The

translation value of (10, 4) is supplied as input to the AffineTransform

class. If you need to visualize the value of the transformation matrix

similar to one in Equation 6.1, you can print out the content of ‘trans-

formation.params’. The transformation is supplied to the warp function

which transform the input image img1 to the output image img2.

import numpy as np

import scipy.misc, math

from scipy.misc.pilutil import Image

from skimage.transform import AffineTransform, warp

img = Image.open('../Figures/angiogram1.png').convert('L')

img1 = scipy.misc.fromimage(img)

# translate by 10 pixels in x and 4 pixels in y

transformation = AffineTransform(translation=(10, 4))

img2 = warp(img1, transformation)

im4 = scipy.misc.toimage(img2)
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im4.save('../Figures/translate_output.png')

im4.show()

The output of the translation is shown below. The image in Figure

6.1(a) is translated to produce the output image in Figure 6.1(b). The

transformed image is translated by 10 pixels to the left and 4 pixels to

the top with reference to the input image.

The missing pixel values on the right and bottom are given a value

of 0 and hence the black pixels on the right and bottom edge. The warp

function’s mode parameter can be used to modify this behavior. If the

mode is, “constant” the value of cval parameter to the warp function

will be used instead of a pixel value of 0. If the mode is, “mean”,

“median”, “maximum”, or “minimum” a padding value equal to the

mean, median, maximum or minimum along that vector will be used

respectively. The readers are recommended to read the documentation

for other options. The choice of the padding value affects the quality of

the image and in some cases further computation.

(a) Input image. (b) Translated image.

FIGURE 6.1: An example of applying translation on an image.
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6.2.2 Rotation

Rotation is the process of changing the radial orientation of an

image along the various axes with respect to a fixed point. The trans-

formation matrix for a counter-clockwise rotation is defined as:

T =

 cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 (6.4)

If we consider a pixel coordinate (x, y, 1) and perform the dot

product with the rotation matrix in Equation 6.4, we will obtain the

pixel coordinate for the rotated matrix.

Ctransformed =
(
x y 1

) cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 (6.5)

Ctransformed =
(
xcos(θ)− ysin(θ) xsin(θ) + ycos(θ) 1

)
(6.6)

The following code implements the rotation transformation. The

image is read and converted into a numpy array. The transformation

matrix is created as an instance of the AffineTransform class. The rota-

tion value of 0.1 radians is supplied as input to the AffineTransform

class. If you need to visualize the value of the transformation matrix

similar to the one in Equation 6.4, you can print out the content of

‘transformation.params’. The transformation is supplied to the warp

function, which transforms the input image img1 to the output image

img2 using the transformation.

import numpy as np

import scipy.misc, math

from scipy.misc.pilutil import Image

from skimage.transform import AffineTransform, warp
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img = Image.open('../Figures/angiogram1.png').convert('L')

img1 = scipy.misc.fromimage(img)

# rotation angle in radians

transformation = AffineTransform(rotation=0.1)

img2 = warp(img1, transformation)

im4 = scipy.misc.toimage(img2)

im4.save('../Figures/rotate_output.png')

im4.show()

The image in Figure 6.2(a) is rotated to produce the output image

in Figure 6.2(b). The transformed image is rotated by 0.1 radians with

reference to the input image. The missing pixel values on the left and

bottom are given a value of 0 that can be modified by supplying appro-

priate values to the warp function’s mode parameter (as discussed in

the previous section).

(a) Input image. (b) Rotated image.

FIGURE 6.2: An example of applying rotation on an image.

6.2.3 Scaling

Scaling is a process of changing the distance (compression or elon-

gation) between points in one or more axes. This change in distance
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causes the object in the image to appear larger or smaller than the

original input. The scaling factor may be different across different axes.

The transformation matrix for scaling is defined as:

T =

kx 0 0

0 ky 0

0 0 1

 (6.7)

If the value of kx or ky is less than 1, then the objects in the image

will appear smaller ,and missing pixel values will be filled with 0 or

based on the value of the warp parameter. If the value of kx or ky is

greater than 1, then the objects in the image will appear larger. If the

value of kx and ky are equal, the image is compressed or elongated by

the same amount along both axes.

If we consider a pixel coordinate (x, y, 1) and perform the dot

product with the scaling matrix in Equation 6.7, we will obtain the

pixel coordinate for the scaled matrix.

Ctransformed =
(
x y 1

)kx 0 0

0 ky 0

0 0 1

 (6.8)

Ctransformed =
(
x ∗ kx y ∗ ky 1

)
(6.9)

The following code implements scaling transformation. The image

is read and converted to a numpy array. The transformation matrix is

created as an instance of the AffineTransform class. The scaling value

of (0.5, 0.5) is supplied as input to the AffineTransform class corre-

sponding to scaling along x and y axes. The transformation is supplied

to the warp function, which transforms the input image img1 to the

output image img2 using the transformation.

import numpy as np

import scipy.misc, math

from scipy.misc.pilutil import Image
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from skimage.transform import AffineTransform, warp

img = Image.open('../Figures/angiogram1.png').convert('L')

img1 = scipy.misc.fromimage(img)

# scale by 1/2 on both x and y.

transformation = AffineTransform(scale=(0.5, 0.5))

img2 = warp(img1, transformation)

im4 = scipy.misc.toimage(img2)

im4.save('../Figures/scale_output.png')

im4.show()

The image in Figure 6.3(a) is scaled to produce the output image

in Figure 6.3(b). The image is scaled to 0.5 of its original size with

reference to the input image along both axes.

(a) Input image. (b) Scaled image.

FIGURE 6.3: An example of applying scaling on an image.

6.2.4 Interpolation

To understand the use of interpolation, we will first perform a

thought experiment. Consider an image of size 2x2. If this image is

scaled to four times its size in all linear dimensions, the new image will
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be of size 8x8. The original image has only 4 pixel values while the

new image needs 64 pixel values. The question is: How can we fill 64

pixels with values given that there are only 4 pixel values? The answer

is interpolation.

The various interpolation schemes available are:

1. Nearest-neighbor (order = 0)

2. Bi-linear (order = 1)

3. Bi-quadratic (order = 2)

4. Bi-cubic (order = 3)

5. Bi-quartic (order = 4)

6. Bi-quintic (order = 5)

The order number specified in parentheses is the number used by

scikit-image. We will learn about the first 4 interpolation schemes. In

all these schemes, the aim is to fill the missing pixel value.

In the nearest-neighbor interpolation,a the missing pixel value is

determined based on its immediate neighbors. For a large scaling fac-

tor such as 2, we will assign 4 neighbors in the output image to the

same pixel value as one of the pixels in the input image, thus making

the output image appear pixelated. It is not recommended to use this

interpolation even though it is the easiest to implement and also the

fastest.

In the bi-linear interpolation, the missing pixel values are deter-

mined based on 2x2 pixels around the missing pixels. This results in a

smoothed image with fewer artifacts compared to the nearest-neighbor

interpolation. Since nearest-neighbor interpolation does not produce a

good-quality image compared to other interpolation, it is recommended

to use bi-linear at least. In scikit-image, bi-linear is the default inter-

polation.

In the bi-quadratic interpolation, the missing pixel values are deter-

mined based on 3x3 pixels around the missing pixels while in the
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bi-cubic interpolation, the missing pixel values are determined based

on 4x4 pixels around the missing pixels. This results in a smoothed

image with fewer artifacts compared to the bi-linear interpolation but

at a higher computational cost.

The other two interpolations bi-quartic and bi-quintic, result in

smoother interpolation but higher computational cost.

The following code demonstrates the effect of various interpolations.

The image is read and converted to a numpy array. The transforma-

tion matrix is created as an instance of the AffineTransform class. The

scaling value of (0.3, 0.3) is supplied as input to the AffineTransform

class corresponding to scaling along x and y axes.

The transformation is then supplied to the warp functio,n which

transforms the input image img1 to the output image img2 using the

transformation with various interpolation schemes specified using the

value for the parameter order. The transformed image for each of the

interpolations is then stored.

import numpy as np

import scipy.misc, math

from scipy.misc.pilutil import Image

from skimage.transform import AffineTransform, warp

img = Image.open('../Figures/angiogram1.png').convert('L')

img1 = scipy.misc.fromimage(img)

transformation = AffineTransform(scale=(0.3, 0.3))

# nearest neighbor order = 0

img2 = warp(img1, transformation, order=0)

im4 = scipy.misc.toimage(img2)

im4.save('../Figures/interpolate_nn_output.png')

im4.show()
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# bi-linear order = 1

img2 = warp(img1, transformation, order=1) # default

im4 = scipy.misc.toimage(img2)

im4.save('../Figures/interpolate_bilinear_output.png')

im4.show()

#bi-quadratic order = 2

img2 = warp(img1, transformation, order=2)

im4 = scipy.misc.toimage(img2)

im4.save('../Figures/interpolate_biquadratic_output.png')

im4.show()

#bi-cubic order = 3

img2 = warp(img1, transformation, order=3)

im4 = scipy.misc.toimage(img2)

im4.save('../Figures/interpolate_bicubic_output.png')

im4.show()

The image in Figure 6.4(a) is scaled to produce all the other images.

The image in Figure 6.4(b) used nearest neighbor interpolation, the

image in Figure 6.4(c) used bi-linear interpolation, the image in Figure

6.4(d) used bi-quadratic interpolation and the image in Figure 6.4(e)

used bi-cubic interpolation. As can be seen in the image, the nearest-

neighbor performed poorly as it exhibits pixelation compared to all

other methods. The quality of the image for all other cases are similar

but the cost increases significantly for all other methods.
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(a) Input image. (b) Nearest neighbors.

(c) Bilinear. (d) Biquadratic.

(e) Bicubic.

FIGURE 6.4: An example of applying various interpolation schemes
on an image.

6.3 Summary

• Affine transformation is a geometric transformation that pre-

serves points, lines and planes.
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• We discussed the commonly used affine transformations such as

rotation, translation and scaling.

• We also discussed interpolation, its purpose and the various

schemes. It is recommended to not use nearest-neighbor inter-

polation as it results in pixelation artifact.

6.4 Exercises

1. Consider any of the images used in this chapter. Then, rotate or

translate the image by various angles and distance, and for each

case, study the histogram. Are the histograms of the input and

output image different for different transformations?

2. What happens if you zoom (scale) into the image while keeping

the image size the same? Try different zoom levels (2X, 3X, and

4X). Would the histograms of the input image and output image

look different?
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Chapter 7

Fourier Transform

7.1 Introduction

In Chapter 4, we focused on images in the spatial domain, i.e.,

the physical world. In this chapter, we will learn about the frequency

domain. The process of converting an image from the spatial domain

to the frequency domain provides valuable insight into the nature of

the image. In some cases, an operation can be performed more effi-

ciently in the frequency domain than in the spatial domain. In this

chapter, we introduce the various aspects of the Fourier transform and

its properties. We focus exclusively on filtering an image in the fre-

quency domain. Interested readers can refer to [Bra78],[Smi07],[SS03],

etc. for more in-depth treatment of Fourier transformation.

The French mathematician Jean Joseph Fourier developed Fourier

transforms in an attempt to solve the heat equation. During the pro-

cess, he recognized that a function can be expressed as infinite sums

of sines and cosines of different frequencies, now known as the Fourier

series. The Fourier transform is a representation in which any function

can be expressed as the integral of sines and cosines multiplied with

the weighted function. Also, any function represented in either Fourier

series or transform can be reconstructed completely by an inverse pro-

cess. This is known as inverse Fourier transform.

This result was published in 1822 in the book La Theorie Anali-

tique de la Chaleur. This idea was not welcomed, as at that time math-

ematicians were interested in and studied regular functions. It took

137
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over a century to recognize the importance and power of Fourier series

and transforms. Since the development of the fast Fourier transform

algorithm, FFT [CT65], the applications of Fourier transforms have

affected several fields including remote sensing, signal processing and

image processing.

In image processing, Fourier transforms are used for the following:

• Image filtering

• Image compression

• Image enhancement

• Image restoration

• Image analysis

• Image reconstruction

In this chapter we discuss image filtering and enhancement in detail.

In Chapter 14, we will discuss use of the Fourier transform in the recon-

struction of magnetic resonance images.

7.2 Definition of Fourier Transform

A Fourier transform of a continuous function in one variable f(x)

is given by the following equation:

F (u) =

∫ ∞
−∞

f(x)e−i2πuxdx (7.1)

where i =
√
−1. The function f(x) can be retrieved by finding the

inverse Fourier transform of F (u), which is given by the following

equation:
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f(x) =

∫ ∞
−∞

F (u)ei2πuxdu. (7.2)

The Fourier transform of a one-variable discrete function, f(x) for

x = 0, 1, ...L− 1 is given by the following equation:

F (u) =
1

L

L−1∑
x=0

f(x)e
−i2πux

L (7.3)

for u = 0, 1, 2, ..., L − 1. Equation 7.3 is known as the discrete Fourier

transform, DFT. Likewise, the inverse discrete Fourier transform, IDFT

is given by the following equation:

f(x) =

L−1∑
x=0

F (u)e
−i2πux

L (7.4)

for x = 0, 1, 2, ..., L− 1. Using Euler’s formula eiθ = cos θ + i sin θ, the

above equation simplifies to

F (u) =
1

L

L−1∑
x=0

f(x)

[
cos

(
−2uxπ

L

)
− i sin

(
−2uxπ

L

)]
(7.5)

Now, using the fact that the cos is an even function, i.e., cos(−π) =

cos(π) and that the sin is an odd function, i.e., sin(−π) = − sin(π),

Equation 7.5 can be simplified to:

F (u) =
1

L

L−1∑
x=0

f(x)

[
cos

(
2uxπ

L

)
+ i sin

(
2uxπ

L

)]
(7.6)

F (u) has two parts; the real part constituting the cos is represented as

R(u) and the imaginary part constituting the sin is represented as I(u).

Each term of F is known as the coefficient of the Fourier transform.

Since u plays a key role in determining the frequency of the coefficients

of the Fourier transform, u is known as the frequency variable, while x

is known as the spatial variable.
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Traditionally many experts have compared the Fourier transform to

a glass prism. As a glass prism splits or separates the light into various

wavelengths or frequencies that form a spectrum, the Fourier transform

splits or separates a function into its coefficients, which depend on the

frequency. These Fourier coefficients form a Fourier spectrum in the

frequency domain.

From Equation 7.6, we know that the Fourier transform is comprised

of complex numbers. For computational purposes, it is convenient to

represent the Fourier transform in polar form as:

F (u) = |F (u)|e−iθ(u) (7.7)

where |F (u)| =
√
R2(u) + I2(u) is called the magnitude of the Fourier

transform and θ(u) = tan−1
[
I(u)
R(u)

]
is called the phase angle of the

transform. Power, P (u), is defined as the following:

P (u) = R2(u) + I2(u) = |F (u)|2. (7.8)

The first value in the discrete Fourier transform is obtained by set-

ting u = 0 in Equation 7.3 and then summing the product over all x.

Hence, F (0) is nothing but the average of f(x) since e0 = 1. F (0) has

a non-zero real part while the imaginary part is zero. Other values of

F can be computed in a similar manner.

Let us consider a simple example to illustrate the Fourier transform.

Let f(x) be a discrete function with only four values: f(0) = 2, f(1) =

3, f(2) = 2 and f(3) = 1. Note that the size of f is 4, hence L = 4.

F (0) =
1

4

3∑
x=0

f(x) =
f(0) + f(1) + f(2) + f(3)

4
= 2
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F (1) =
1

4

3∑
x=0

f(x)

[
cos

(
−2πx

4

)
− i sin

(
−i2πx

4

)]

=
1

4

(
f(0)

[
cos

(
0

4

)
+ i sin

(
0

4

)]
+ f(1)

[
cos

(
2π

4

)
+ i sin

(
2π

4

)]

+ f(2)

[
cos

(
4π

4

)
+ i sin

(
4π

4

)]
+ f(3)

[
cos

(
6π

4

)
+ i sin

(
6π

4

)])

=
1

4
(2(1 + 0i) + 3(0 + 1i) + 2(−1 + 0i) + 1(0− 1i))

=
2i

4
=
i

2

Note that F (1) is purely imaginary. For u = 2, the value of F (2) = 0

and for u = 3, the value of F (3) = −i
2 . The four coefficients of the

Fourier transform are
{

2, i2 , 0,
−i
2

}
.

7.3 Two-Dimensional Fourier Transform

The Fourier transform for two variables is given by the following

equation:

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−i2π(ux+vy)dx dy (7.9)

and the inverse Fourier transform is

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)ei2π(ux+vy)du dv. (7.10)

The discrete Fourier transform of a 2D function, f(x, y) with size

L and K is given by the following equation:

F (u, v) =
1

LK

L−1∑
x=0

K−1∑
y=0

f(x, y)e−i2π(
ux

L
+ vy

K ) (7.11)
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for u = 1, 2, ..., L − 1 and v = 1, 2, ...,K − 1. Similar to 1D Fourier

transform, f(x, y) can be computed from F (u, v) by computing the

inverse Fourier transform, given by the following equation:

f(x, y) =

L−1∑
u=0

K−1∑
v=0

F (u, v)ei2π(
ux

L
+ vy

K ) (7.12)

for x = 1, 2, ..., L−1 and y = 1, 2, ...,K−1. As in the case of 1D DFT, u

and v are the frequency variables and x and y are the spatial variables.

The magnitude of the Fourier transform in 2D is given by the following

equation:

|F (u, v)| =
√
R2(u, v) + I2(u, v) (7.13)

and the phase angle is given by

θ(u, v) = tan−1

[
I(u, v)

R(u, v)

]
(7.14)

and the power is given by

P (u, v) = R2(u, v) + I2(u, v) = |F (u, v)|2 (7.15)

where R(u, v) and I(u, v) are the real and imaginary parts of the 2D

DFT.

The properties of a 2D Fourier transform are:

1. The 2D space with x and y as variables is referred to as the spatial

domain and the space with u and v as variables is referred to as

the frequency domain.

2. F (0, 0) is the average of all pixel values in the image. It can be

obtained by substituting u = 0 and v = 0 in Equation 7.11.

Hence F (0, 0) is the brightest pixel in the Fourier transform

image.
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3. The two summations are separable. Thus, summation is per-

formed along the x or y-directions first and in the other direction

later.

4. The computational complexity of DFT is N2. Hence a modified

method called Fast Fourier Transform (FFT) is used to calcu-

late the Fourier transform. Cooley and Tukey developed the FFT

algorithm [CT65]. FFT has a complexity of NlogN and hence the

word “Fast” in its name.

7.3.1 Fast Fourier Transform using Python

The following is the Python function for the forward Fast Fourier

transform:

numpy.fft.fft2(a, s=None, axes=(-2,-1))

Necessary arguments:

a is the input image as an ndarray.

Optional arguments:

s is a tuple of integers that represents the

length of each transformed axis of the output.

The individual elements in s, correspond to

the length of each axis in the input image.

If the length on any axis is less than the

corresponding size in the input image, then

the input image along that axis is cropped. If the

length on any axis is greater than the corresponding

size in the input image, then the input image along

that axis is padded with 0s.

axes is an integer used to compute the FFT. If axis

is not specified, the last two axes are used.
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Returns: output is a complex ndarray.

The Python code for the forward fast Fourier transform is given

below.

import scipy.fftpack as fftim

from PIL import Image

# Opening the image and converting it to grayscale.

b = Image.open('../Figures/fft1.png').convert('L')

# Performing FFT.

c = abs(fftim.fft2(b))

# Shifting the Fourier frequency image.

d = fftim.fftshift(c)

# Converting the d to floating type and saving it

# as fft1_output.raw in Figures folder.

d.astype('float').tofile('../Figures/fft1_output.raw')

In the above code, the image is read and converted to a gray-scale

image. The Fast Fourier transform is obtained using the fft2 function

and only the absolute value is obtained for visualization. The absolute

value image of FFT is then shifted, so that the center of the image is

the center of the Fourier spectrum. The center pixel corresponds to a

frequency of 0 in both directions. Finally, the shifted image is saved as

a raw file for visualization purposes.

The image in Figure 7.1(a) is a slice of Sindbis virus from a trans-

mission electron microscope. The output after performing the FFT is

saved as a raw file since the pixel intensities are floating values. ImageJ

is used to obtain the logarithm of the raw image and the window level

is adjusted to display the corresponding image. Finally, a snapshot of

this image is shown in Figure 7.1(b). As discussed previously, the cen-

tral pixel is the pixel with the highest intensity. This is due to the fact
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that the average of all pixel values in the original image constitutes the

central pixel. The central pixel is (0, 0), the origin. To the left of (0,0)

is −u and to the right is +u. Similarly, to the top of (0,0) is +v and to

the bottom is −v. The lower frequency is close to the central pixel and

the higher frequency is away from the central pixel.

(a) Input for FFT. (b) Output of FFT.

FIGURE 7.1: An example of 2D Fast Fourier transform. Original
image reprinted with permission from Dr. Wei Zhang, University of
Minnesota.

The Python function for inverse Fast Fourier transform is given

below.

numpy.fft.ifft2(a, s=None, axes=(-2,-1))

Necessary arguments:

a is a complex ndarray comprising of Fourier

transformed data.

Optional arguments:

s is a tuple of integers that represents the length

of each transformed axis of the output. The individual
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elements in s, correspond to the length of each axis

in the input image. If the length on any axis is less

than the corresponding size in the input image, then

the input image along that axis is cropped. If the

length on any axis is greater than the corresponding

size in the input image, then the input image along

that axis is padded with 0s.

axes is an integer used to compute the FFT. If axis

is not specified, the last two axes are used.

Returns: output is a complex ndarray.

7.4 Convolution

Convolution was briefly discussed in Chapter 4, “Spatial Filters,”

without any mathematical underpinning. In this section, we discuss the

mathematical aspects of convolution.

Convolution is a mathematical operation that expresses the integral

of the overlap between two functions. A simple example is a blurred

image, which is obtained by convolving an un-blurred image with a

blurring function.

There are many cases of blurred images that we see in real life. A

photograph of a car moving at high speed is blurred due to motion.

A photograph of a star obtained from a telescope is blurred by the

particles in the atmosphere. A wide-field microscope image of an object

is blurred by a signal from out-of-plane. Such blurring can be modeled

as a convolution operation and eliminated by the inverse process called

deconvolution.
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We begin the discussion with convolution in Fourier space. The

convolution operation is expressed mathematically as:

[f ∗ g](t) =

∫ t

0
f(τ)g(t− τ)dτ (7.16)

where f , g are the two functions and the * (asterisk) represents convo-

lution.

The convolution satisfies the following properties:

1. f ∗ g = g ∗ f Commutative Property

2. f ∗ (g ∗ h) = (f ∗ g) ∗ h Associative Property

3. f ∗ (g + h) = f ∗ g + f ∗ h Distributive Property

The convolution operation is simpler in Fourier space than in real

space but depending on the size of the image and the functions used, the

former can be computationally efficient. In Fourier space, convolution

is performed on the whole image at once. However, in spatial domain

convolution is performed by sliding the filter window on the image.

7.4.1 Convolution in Fourier Space

Let us assume that the convolution of f and g is the function h.

h(t) = [f ∗ g](t). (7.17)

If the Fourier transform of this function is H, then H is defined as

H = F.G (7.18)

where F and G are the Fourier transforms of the functions f and g

respectively and the . (dot) represents multiplication. Thus, in Fourier

space the complex operation of convolution is replaced by a simpler

multiplication. The proof of this theorem is beyond the scope of this

book. You can find details in most mathematical textbooks on Fourier
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transform. The formula is applicable irrespective of the number of

dimensions of f and g. Hence it can be applied to a 1D signal and

also to 3D volume data.

7.5 Filtering in the Frequency Domain

In this section, we discuss applying various filters to an image in the

Fourier space. The convolution principle stated in Equation 7.18 will

be used for filtering. In lowpass filters, only low frequencies from the

Fourier transform are used while high frequencies are blocked. Similarly,

in highpass filters, only high frequencies from the Fourier transform are

used while the low frequencies are blocked. Lowpass filters are used to

smooth the image or reduce noise, whereas highpass filters are used

to sharpen edges. In each case, three different filters, namely, ideal,

Butterworth and Gaussian, are considered. The three filters differ in

the creation of the windows used in filtering.

7.5.1 Ideal Lowpass Filter

The convolution function for the 2D ideal lowpass filter (ILPF) is

given by

H(u, v) =

1, if d(u, v) ≤ d0

0, else
(7.19)

where d0 is a specified quantity and d(u.v) is the Euclidean distance

from the point (u, v) to the origin of the Fourier domain. Note that for

an image of size M by N , the coordinates of the origin are

(
M

2
,
N

2

)
.

So d0 is the distance of the cutoff frequency from the origin.

For a given image, after the convolution function is defined, the ideal

lowpass filter can be performed with element-by-element multiplication
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of the FFT of the image and the convolution function. Then the inverse

FFT is performed on the convolved function to get the output image.

The Python code for the ideal lowpass filter is given below.

import cv2

import numpy, math

import scipy.fftpack as fftim

from PIL import Image

# Opening the image and converting it to grayscale.

b = Image.open('../Figures/fft1.png').convert('L')

# Performing FFT.

c = fftim.fft2(b)

# Shifting the Fourier frequency image.

d = fftim.fftshift(c)

# Intializing variables for convolution function.

M = d.shape[0]

N = d.shape[1]

# H is defined and

# values in H are initialized to 1.

H = numpy.ones((M,N))

center1 = M/2

center2 = N/2

d_0 = 30.0 # cut-off radius

# Defining the convolution function for ILPF.

for i in range(1,M):

for j in range(1,N):

r1 = (i-center1)**2+(j-center2)**2

# Euclidean distance from

# origin is computed.

r = math.sqrt(r1)
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# Using cut-off radius to eliminate

# high frequency.

if r > d_0:

H[i,j] = 0.0

# Converting H to an image.

H = Image.fromarray(H)

# Performing the convolution.

con = d * H

# Computing the magnitude of the inverse FFT.

e = abs(fftim.ifft2(con))

# Saving e as ilowpass_output.png in

# Figures folder .

cv2.imwrite('../Figures/ilowpass_output.png', e)

The image is read and its Fourier transform is determined using the

fft2 function. The Fourier spectrum is shifted to the center of the image

using the fftshift function. A filter (H) is created by assigning a value of

1 to all pixels within a radius of d0 and 0 otherwise. Finally, the filter

(H) is convolved with the image (d) to obtain the convolved Fourier

image (con). This image is inverted using ifft2 to obtain the filtered

image in spatial domain. Since high frequencies are blocked, the image

7.2(a) is blurred.

A simple image compression technique can be created using the

concept of lowpass filtering. In this technique, all high-frequency data

is cleared and only the low-frequency data is stored. This reduces the

number of Fourier coefficients stored and consequently needs less stor-

age space on the disk. During the process of displaying the image,

an inverse Fourier transform can be obtained to convert the image to

the spatial domain. Such an image will suffer from blurring, as high

frequency information is not stored. A proper selection of the cut-off

radius can reduce the blurring and loss of crucial data in the decom-

pressed image.
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7.5.2 Butterworth Lowpass Filter

The convolution function for the Butterworth lowpass filter (BLPF)

is given below:

H(u, v) =
1

1 +
(
d(u,v)
d0

)2 (7.20)

where d0 is the cut-off distance from the origin for the frequency and

d(u, v) is the Euclidean distance from the origin. In this filter, unlike the

ILPF, the pixel intensity at the cut-off radius does not change rapidly.

The Python code for the Butterworth lowpass filter is given below:

import numpy, math

import scipy.fftpack as fftim

from PIL import Image

import cv2

# Opening the image and converting it to grayscale.

b = Image.open('../Figures/fft1.png').convert('L')

# Performing FFT.

c = fftim.fft2(b)

# Shifting the Fourier frequency image.

d = fftim.fftshift(c)

# Intializing variables for convolution function.

M = d.shape[0]

N = d.shape[1]

# H is defined and

# values in H are initialized to 1.

H = numpy.ones((M,N))

center1 = M/2

center2 = N/2

d_0 = 30.0 # cut-off radius

t1 = 1 # the order of BLPF

t2 = 2*t1
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# Defining the convolution function for BLPF.

for i in range(1,M):

for j in range(1,N):

r1 = (i-center1)**2+(j-center2)**2

# Euclidean distance from

# origin is computed.

r = math.sqrt(r1)

# Using cut-off radius to

# eliminate high frequency.

if r > d_0:

H[i,j] = 1/(1 + (r/d_0)**t1)

# Converting H to an image

H = Image.fromarray(H)

# Performing the convolution.

con = d * H

# Computing the magnitude of the inverse FFT.

e = abs(fftim.ifft2(con))

# Saving e.

cv2.imwrite('../Figures/blowpass_output.png', e)

This program is similar to the Python code used for ILPF except

for the creation of the filter (H).

7.5.3 Gaussian Lowpass Filter

The convolution function for the Gaussian lowpass filter (GLPF) is

given below:

H(u, v) = e
−d2(u,v)

2d2
0 (7.21)
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where d0 is the cut-off frequency and d(u, v) is the Euclidean distance

from origin. The filter creates a much more gradual change in intensity

at the cut-off radius compared to the Butterworth lowpass filter.

The Python code for the Gaussian lowpass filter is given below.

import numpy, math

import cv2

import scipy.fftpack as fftim

from PIL import Image

# Opening the image and converting it to grayscale.

b = Image.open('../Figures/fft1.png').convert('L')

# Performing FFT.

c = fftim.fft2(b)

# Shifting the Fourier frequency image.

d = fftim.fftshift(c)

# Intializing variables for convolution function.

M = d.shape[0]

N = d.shape[1]

# H is defined and

# values in H are initialized to 1.

H = numpy.ones((M,N))

center1 = M/2

center2 = N/2

d_0 = 30.0 # cut-off radius

t1 = 2*d_0

# Defining the convolution function for GLPF

for i in range(1,M):

for j in range(1,N):

r1 = (i-center1)**2+(j-center2)**2

# euclidean distance from

# origin is computed

r = math.sqrt(r1)
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# using cut-off radius to

# eliminate high frequency

if r > d_0:

H[i,j] = math.exp(-r**2/t1**2)

# Converting H to an image.

H = Image.fromarray(H)

# Performing the convolution.

con = d * H

# Computing the magnitude of the inverse FFT.

e = abs(fftim.ifft2(con))

# Saving the image as glowpass_output.png in

# Figures folder .

cv2.imwrite('../Figures/glowpass_output.png', e)

Figure 7.1 is the input image to be filtered using ILPF, BLPF and

GLPF. The images in Figures 7.2(a), 7.2(b) and 7.2(c) are the outputs

of ideal lowpass, Butterworth lowpass, and Gaussian lowpass filters

with cut-off radius at 30. Notice how the blurriness varies in the output

images. The ILPF is extremely blurred due to the sharp change in the

ILPF convolution function at the cut-off radius. There are also severe

ringing artifacts, the spaghetti-like structure in the background next to

the foreground pixels. In BLPF, the convolution function is continuous

which results in less blurring and fewer ringing artifacts compared to

ILPF. Since a smoothing operator forms the GLPF convolution func-

tion, the output of GLPF is even less blurred when compared to both

ILPF and BLPF.

7.5.4 Ideal Highpass Filter

The convolution function for the 2D ideal highpass filter (IHPF) is

given by
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(a) Input for lowpass filters. (b) Output of ILPF.

(c) Output of BLPF. (d) Output of GLPF.

FIGURE 7.2: An example of lowpass filters. The input image and all
the output images are displayed in the spatial domain.

H(u, v) =

0, if d(u, v) ≤ d0

1, else
(7.22)

where d0 is the cutoff frequency and d(u, v) is the Euclidean distance

from the origin.

The Python code for ideal highpass filter is given below.

import cv2
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import numpy, math

import scipy.fftpack as fftim

from PIL import Image

# Opening the image and converting it to grayscale

a = Image.open('../Figures/endothelium.png').convert('L')

# Performing FFT.

b = fftim.fft2(a)

# shifting the Fourier frequency image

c = fftim.fftshift(b)

# intializing variables for convolution function

M = c.shape[0]

N = c.shape[1]

# H is defined and

# values in H are initialized to 1.

H = numpy.ones((M,N))

center1 = M/2

center2 = N/2

d_0 = 30.0 # cut-off radius

# Defining the convolution function for IHPF.

for i in range(1,M):

for j in range(1,N):

r1 = (i-center1)**2+(j-center2)**2

# Euclidean distance from

# origin is computed.

r = math.sqrt(r1)

# Using cut-off radius to

# eliminate low frequency.

if 0 < r < d_0:

H[i,j] = 0.0

# Performing the convolution.
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con = c * H

# Computing the magnitude of the inverse FFT.

d = abs(fftim.ifft2(con))

# Saving the image as ihighpass_output.png in

# Figures folder.

cv2.imwrite('../Figures/ihighpass_output.png', d)

In this program, the filter (H) is created by assigning a pixel value

of 1 to all pixels above the cut-off radius and 0 otherwise.

7.5.5 Butterworth Highpass Filter

The convolution function for the Butterworth highpass filter

(BHPF) is given below:

H(u, v) =
1

1 +
(

d0
d(u,v)

)2n (7.23)

where d0 is the cut-off frequency, d(u, v) is the Euclidean distance from

the origin and n is the order of the BHPF.

The Python code for the BHPF is given below.

import cv2

import numpy, math

import scipy.misc

import scipy.fftpack as fftim

from PIL import Image

# Opening the image.

a = cv2.imread('../Figures/endothelium.png')

# Converting the image to grayscale.

b = cv2.cvtColor(a, cv2.COLOR_BGR2GRAY)

# Performing FFT.

c = fftim.fft2(b)

# Shifting the Fourier frequency image.
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d = fftim.fftshift(c)

# Intializing variables for convolution function.

M = d.shape[0]

N = d.shape[1]

# H is defined and

# values in H are initialized to 1.

H = numpy.ones((M,N))

center1 = M/2

center2 = N/2

d_0 = 30.0 # cut-off radius

t1 = 1 # the order of BHPF

t2 = 2*t1

# Defining the convolution function for BHPF.

for i in range(1,M):

for j in range(1,N):

r1 = (i-center1)**2+(j-center2)**2

# Euclidean distance from

# origin is computed.

r = math.sqrt(r1)

# Using cut-off radius to

# eliminate low frequency.

if 0 < r < d_0:

H[i,j] = 1/(1 + (r/d_0)**t2)

# Converting H to an image.

H = Image.fromarray(H)

# performing the convolution

con = d * H

# computing the magnitude of the inverse FFT

e = abs(fftim.ifft2(con))

cv2.imwrite('../Figures/bhighpass_output.png', e)
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7.5.6 Gaussian Highpass Filter

The convolution function for the Gaussian highpass filter (GHPF)

is given below:

H(u, v) = 1− e
−d2(u,v)

2d2
0 (7.24)

where d0 is the cut-off frequency and d(u, v) the Euclidean distance

from the origin.

The Python code for the GHPF is given below.

import cv2

import numpy, math

import scipy.fftpack as fftim

from PIL import Image

# Opening the image and converting it to grayscale.

a = Image.open('../Figures/endothelium.png').convert('L')

# Performing FFT.

b = fftim.fft2(a)

# Shifting the Fourier frequency image.

c = fftim.fftshift(b)

# Intializing variables for convolution function.

M = c.shape[0]

N = c.shape[1]

# H is defined and values in H are initialized to 1.

H = numpy.ones((M,N))

center1 = M/2

center2 = N/2

d_0 = 30.0 # cut-off radius

t1 = 2*d_0
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# Defining the convolution function for GHPF.

for i in range(1,M):

for j in range(1,N):

r1 = (i-center1)**2+(j-center2)**2

# Euclidean distance from

# origin is computed.

r = math.sqrt(r1)

# Using cut-off radius to

# eliminate low frequency.

if 0 < r < d_0:

H[i,j] = 1 - math.exp(-r**2/t1**2)

# Converting H to an image.

H = Image.fromarray(H)

# Performing the convolution.

con = c * H

# Computing the magnitude of the inverse FFT.

e = abs(fftim.ifft2(con))

# Saving the image as ghighpass_output.png in

# Figures folder.

cv2.imwrite('../Figures/ghighpass_output.png', e)

The image in Figure 7.3(a) is the endothelium cell. The images in

Figures 7.3(b), 7.3(c) and 7.3(d) are the outputs of the IHPF, BHPF

and GHPF with cut-off radius at 30. Highpass filters are used to deter-

mine edges. Notice how the edges are formed in each case.

7.5.7 Bandpass Filter

A bandpass filter, as the name indicates, allows frequency from a

band or range of values. All the frequencies from outside the band

are set to zero. Similar to the lowpass and highpass filters, bandpass
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(a) Input for highpass filters. (b) Output of the IHPF.

(c) Output of the BHPF. (d) Output of the GHPF.

FIGURE 7.3: An example of highpass filters. The input image and all
the output images are displayed in the spatial domain.

filters can be Ideal, Butterworth or Gaussian. Let us consider the ideal

bandpass filter, IBPF.

The Python code for the IBPF is given below.

import scipy.misc

import numpy, math

import scipy.fftpack as fftim

from PIL import Image

import cv2
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# Opening the image and converting it to grayscale.

b = Image.open('../Figures/fft1.png').convert('L')

# Performing FFT.

c = fftim.fft2(b)

# Shifting the Fourier frequency image .

d = fftim.fftshift(c)

# Intializing variables for convolution function.

M = d.shape[0]

N = d.shape[1]

# H is defined and

# values in H are initialized to 1.

H = numpy.zeros((M,N))

center1 = M/2

center2 = N/2

d_0 = 30.0 # minimum cut-off radius

d_1 = 50.0 # maximum cut-off radius

# Defining the convolution function for bandpass

for i in range(1,M):

for j in range(1,N):

r1 = (i-center1)**2+(j-center2)**2

# Euclidean distance from

# origin is computed.

r = math.sqrt(r1)

# Using min and max cut-off to create

# the band or annulus.

if r > d_0 and r < d_1:

H[i,j] = 1.0

# Converting H to an image.

H = Image.fromarray(H)

# Performing the convolution.

con = d * H
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# Computing the magnitude of the inverse FFT.

e = abs(fftim.ifft2(con))

# Saving the image as ibandpass_output.png.

cv2.imwrite('../Figures/ibandpass_output.png', e)

The difference between this program compared to highpass or low-

pass filters is in creation of the filter. In the bandpass filter, the mini-

mum cut-off radius is set to 30 and the maximum cut-off radius is set

to 50. Only intensities between 30 and 50 are passed and everything

else is set to zero. Figure 7.4(a) is the input image and Figure 7.4(b)

is the output image for the IBPF. Notice that the edges in the out-

put image of the IBPF is sharp compared to the input. Similar filters

can be created for Butterworth and Gaussian filters using the formula

discussed earlier.

(a) Input of the IBPF. (b) Output of the IBPF.

FIGURE 7.4: An example of IBPF. The input and the output are
displayed in the spatial domain.
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7.6 Summary

• Lowpass filters are used for noise reduction or smoothing. High-

pass filters are used for edge enhancement or sharpening.

• In ideal lowpass and highpass filters, Butterworth and Gaussian

were considered.

• A bandpass filter has minimum cut-off and maximum cut-off

radii.

• Convolution can be viewed as the process of combining two

images. Convolution is multiplication in the Fourier domain. The

inverse process is called deconvolution.

• The Fourier transform can be used for image filtering, compres-

sion, enhancement, restoration and analysis.

7.7 Exercises

1. The Fourier transform is one method for converting any function

as a sum of basis functions. Perform research and find at least

two other such methods. Write a report on their use in image

processing.

Hint: Wavelet, z-transform

2. An example for determining the Fourier coefficient was shown ear-

lier. However, the discussion was limited to 4 coefficients. Deter-

mine the 5th coefficient assuming f(4) = 2.

3. The central pixel in the Fourier image is brighter compared to

other pixels. Why?
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4. The image in Figure 7.2(b) has a fuzzy structure next to the

object. What is this called? What causes the artifact? Why are

there fewer artifacts in BLPF and GLPF output images?

5. Consider an image of size 10,000-by-10,000 pixels that needs to

be convolved with a filter of size 100-by-100. Comment about the

most efficient method for convolving. Would it be convolution in

the spatial domain or Fourier?
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Chapter 8

Segmentation

8.1 Introduction

Segmentation is the process of separating an image into multiple

logical regions. The regions can be defined as pixels sharing similar

characteristics such as intensity, texture, etc. There are many methods

of segmentation. They can be classified as follows:

• Histogram-based segmentation

• Region-based segmentation

• Edge segmentation

• Differential equation-based methods

• Contour methods

• Graph partitioning methods

• Model based segmentation

• Clustering methods, etc.

In this chapter, we discuss histogram and region-based and con-

tour segmentation methods. Edge-based segmentation was discussed

in Chapter 4, “Spatial Filters.” The other methods are beyond the

scope of this book. Interested readers can refer to [GWE09],[Rus11]

and [SHB+99] for more details.

167
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8.2 Histogram-Based Segmentation

In the histogram-based method (Figure 8.1), a threshold is deter-

mined by using the histogram of the image. Each pixel in the image is

compared with the threshold value. If the pixel intensity is less than the

threshold value, then the corresponding pixel in the segmented image

is assigned a value of zero. If the pixel intensity is greater than the

threshold value, then the corresponding pixel in the segmented image

is assigned a value of 1. Thus,

if pv ≥ threshold then

segpv = 1

else

segpv = 0

end if

where pv is the pixel value in the image, segpv is the pixel value in the

segmented image.

The various histogram-based methods differ in their techniques of

determining the threshold. We will discuss Otsu’s method and the

Renyi entropy method. In images with a non-uniform background, a

global threshold value from the histogram-based method might not be

optimal. In such cases, local adaptive thresholding (discussed later)

may be used.

8.2.1 Otsu’s Method

Otsu’s method [Ots79] works best if the histogram of the image is

bi-modal, but can be applied to other histograms as well. A bi-modal

histogram is a type of histogram (similar to Figure 8.1) containing two

distinct peaks separated by a valley. One peak is the background and

the other is the foreground. Otsu’s algorithm searches for a threshold
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FIGURE 8.1: Threshold divides the pixels into foreground and back-
ground.

value that maximizes the variance between the two groups foreground

and background, so that the threshold value can better segment the

foreground from the background.

Let L be the number of intensities in the image. For an 8-bit image,

L = 28 = 256. For a threshold value, t, the probabilities, pi, of each

intensity are calculated. Then the probability of the background pix-

els is given by Pb(t) =

t∑
i=0

pi and the probability of foreground pixels

is given by Pf (t) =

L−1∑
i=t+1

pi. Let mb =

t∑
i=0

ipi, mf =

L−1∑
i=t+1

ipi and

m =

L−1∑
i=0

ipi represent the average intensities of the background, the

foreground, and the whole image, respectively. Let vb, vf and v be the

variance of the background, foreground, and the whole image, respec-

tively. Then the variance within the groups is given by Equation 8.1

and the variance in between the groups is given by Equation 8.2.

vwithin = Pb(t)vb + Pf (t)vf (8.1)

vinbetween = v − vwithin = PbPf (mb −mf )2. (8.2)
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For different threshold values, this process of finding variance within

the groups and variance between the groups is repeated. The threshold

value that maximizes the variance between the groups or minimizes

the variance within the group is considered Otsu’s threshold. All pixel

values with intensities less than the threshold value are assigned a value

of zero and all pixel values with intensities greater than the threshold

value are assigned a value of one.

In the case of a color image, since there are three channels, Red,

Green, and Blue, a different threshold value for each channel is calcu-

lated.

The following is the Python function for Otsu’s method:

skimage.filter.threshold_otsu(image, nbins=256)

Description of function arguments:

necessary argument:

image = input image in gray-scale

optional argument:

nbins = number of bins that should be considered

to calculate the histogram.

The Python code for Otsu’s method is given below.

import cv2

import numpy

from PIL import Image

from skimage.filters.thresholding import threshold_otsu



Segmentation 171

# Opening the image and converting it to grayscale

a = Image.open('../Figures/sem3.png').convert('L')

a = numpy.asarray(a)

thresh = threshold_otsu(a)

# Pixels with intensity greater than the

# "threshold" are kept.

b = 255*(a > thresh)

# Saving the image.

cv2.imwrite('../Figures/otsu_output.png', b)

In Figure 8.2(a) is a scattered electron image of an atomic element

in two different phases. We segment the image using Otsu’s method.

The output is given in Figure 8.2(b).

(a) Input image. (b) Output image.

FIGURE 8.2: An example of Otsu’s method. Original image reprinted
with permission from Karthik Bharathwaj.

Otsu’s method uses the histogram to determine the threshold and

hence is very much dependent on the image pixel values. Figure 8.3(a)

is an image of a spin-wheel. Otsu’s method is used to segment this

image, and the segmented output image is shown in Figure 8.3(b). Due

to the shadow on the wheel in the input image, Otsu’s method did not

segment the spin-wheel accurately.



172 Image Processing and Acquisition using Python

(a) Input image for Otsu’s method. (b) Output of Otsu’s method.

FIGURE 8.3: Another example of Otsu’s method.

8.2.2 Renyi Entropy

Renyi entropy-based segmentation is very useful when the object

of interest is small compared to the whole image i.e., the threshold is

at the right tail of the histogram. For example, in the CT image of

an abdomen shown in Figure 8.4(b), the tissue and background occupy

more area in comparison to the bone. In the histogram, the background

and tissue pixels have low pixel intensity while the bone region has high

intensity.

In information theory and image processing, entropy quantifies the

uncertainty or randomness of a variable. This concept was first intro-

duced by Claude E. Shannon in his 1948 paper “A Mathematical The-

ory of Communication” [Sha48]. This paper launched Shannon as the

father of information theory. In information theory and also in image

processing, entropy is measured in bits where each pixel value is con-

sidered as an independent random variable.

Shannon entropy is given by

H1(x) = −
n∑
i=1

p(xi) loga(p(xi)) (8.3)

where xi is the random variable with i = 1, 2, ..., n and p(xi) is the

probability of the random variable xi and the base a can be 2, e, or 10.
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Alfred Renyi, a Hungarian mathematician, introduced Renyi

entropy in his paper [Ren61] in 1961. Renyi entropy is a generaliza-

tion of Shannon entropy and many other entropies and is given by the

following equation:

Hα(x) =
1

1− α
loga

(
n∑
i=1

(p(xi))
α

)
(8.4)

where xi is the random variable with i = 1, 2, ..., n and p(xi) is the

probability of the random variable xi and the base a can be 2, e or 10.

Renyi entropy equals Shannon entropy for α→ 1.

The histogram of the image is used as an independent random vari-

able to determine the threshold. The histogram is normalized by divid-

ing each frequency with the total number of pixels in the image. This

will ensure that the sum of the frequencies after normalization is one.

This is the probability distribution function (pdf) of the histogram.

The Renyi entropy can then be calculated for this pdf.

The Renyi entropy is calculated for all pixels below and above the

threshold. These will be referred to as background entropy and fore-

ground entropy respectively. This process is repeated for all the pixel

values in the pdf. The total entropy is calculated as the sum of back-

ground entropy and foreground entropy for each pixel value in the pdf.

The graph of the total entropy has one absolute maximum. The thresh-

old value corresponding to that absolute maximum is the threshold (t)

for segmentation.

The following is the Python code for Renyi entropy for an 8-bit

(grayscale) image. The program execution begins with opening the CT

image. The image is then processed by the function renyi seg fn. The

function obtains the histogram of the image and calculates the pdf by

dividing each histogram value by the total number of pixels. Two arrays,

h1 and h2, are created to store the background and foreground Renyi

entropy. For various thresholds, the background and foreground Renyi

entropy are calculated using Equation 8.4. The total entropy is the sum

of the background and foreground Renyi entropies. The threshold value

for which the entropy is maximum is the Renyi entropy threshold.
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import cv2

from PIL import Image

import numpy as np

import skimage.exposure as imexp

import matplotlib.pyplot as plt

# Defining function

def renyi_seg_fn(im, alpha):

hist, _ = imexp.histogram(im)

# Convert all values to float

hist_float = np.array([float(i) for i in hist])

# compute the pdf

pdf = hist_float/np.sum(hist_float)

# compute the cdf

cumsum_pdf = np.cumsum(pdf)

s, e = im.min(), im.max()

scalar = 1.0/(1.0-alpha)

# A very small value to prevent error due to log(0).

eps = np.spacing(1)

rr = e-s

# The inner parentheses is needed because

# the parameters are tuple.

h1 = np.zeros((rr, 1))

h2 = np.zeros((rr, 1))

# The following loop computes h1 and h2

# values used to compute the entropy.

for ii in range(1, rr):

iidash = ii+s

temp0 = pdf[0:iidash]/(cumsum_pdf[iidash])

temp1 = np.power(temp0, alpha)

h1[ii] = np.log(np.sum(temp1)+eps)

temp0 = pdf[iidash+1:e]/(1.0-cumsum_pdf[iidash])
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temp2 = np.power(temp0, alpha)

h2[ii] = np.log(np.sum(temp2)+eps)

T = h1+h2

# Entropy value is calculated

T = T*scalar

T = T.reshape((rr, 1))[:-2]

# location where the maximum entropy

# occurs is the threshold for the renyi entropy

thresh = T.argmax(axis=0)

return thresh

# Main program

# Opening the image and converting it to grayscale.

a = Image.open('../Figures/CT.png').convert('L')

a = np.array(a)

# Computing the threshold by calling the function.

thresh = renyi_seg_fn(a, 3)

print('The renyi threshold is: ', thresh[0])

b = 255*(a > thresh)

# Saving the image as renyi_output.png

cv2.imwrite('../Figures/renyi_output.png', b)

Figure 8.4(a) is a CT image of the abdomen. The histogram of this

image is given in Figure 8.4(b). Notice that the bone region (higher

pixel intensity) is on the right side of the histogram and are fewer in

number compared to the whole image. Renyi entropy is performed on

this image to segment the bone region alone. The segmented output

image is given in Figure 8.4(c).

For more details on thresholding, refer to [Par91], [SSW88] and

[SPK98].
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(a) Input image. (b) Histogram of the input.

(c) Output image.

FIGURE 8.4: An example of Renyi entropy.

8.2.3 Adaptive Thresholding

As we have seen in Section 8.2.1, Otsu’s method, a global threshold,

might not provide accurate segmentation. Adaptive thresholding helps

solve this problem. In adaptive thresholding, the image is first divided

into many sub-images. The threshold value for each sub-image is com-

puted and is used to segment the sub-image. The threshold value for

the sub-image can be computed using the mean or median or Gaussian
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methods. In the case of the mean method, the mean of the sub-image

is used as a threshold, while for the median method, the median of

the sub-image is used as a threshold. A custom formula can also be

used to compute the threshold, for example, we can use an average of

maximum and minimum pixel values in the sub-image. By appropriate

programming, any of the histogram-based segmentation methods can

be converted into an adaptive thresholding method.

The following is the Python function for adaptive thresholding:

cv2.AdaptiveThreshold(image, dst, maxValue,

adaptiveMethod, thresholdType, blockSize, C)

Necessary arguments:

image is a gray-scale image of type numpy array.

dst is the thresholded image as an ndarray.

maxValue is the maximum pixel value in the image.

C is a constant value that should be subtracted

from every pixel value (see below).

blockSize is an odd integer that specifies the size

of the adaptive thresholding window.

adaptiveMethod can be mean or Gaussian. For the

mean method, the threshold is calculated as the mean

of the pixel value within the blockSize minus the

parameter C. For the Gaussian method, the threshold

is calculated as the weighted sum of the region within

the blockSize minus the parameter C.

thresholdType can be either THRESH_BINARY or
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THRESH_BINARY_INV. In the former, if a given

pixel value is greater than the threshold, then that pixel

in the output image will be set to a maximum value and

other pixels will be set to zero.

In the latter, if a given pixel value is smaller than the

threshold, then that pixel in the output image will be set

to a maximum value other pixels will be set to zero.

Returns: output is a thresholded image as an ndarray.

The Python code for adaptive thresholding is given below.

import cv2

import numpy

from PIL import Image

from skimage.filters import threshold_local

# Opening the image and converting it to grayscale.

a = Image.open('../Figures/adaptive_example1.png').

convert('L')

a = numpy.asarray(a)

# Performing adaptive thresholding.

b = cv2.adaptiveThreshold(a,a.max(), cv2.ADAPTIVE_THRESH_

MEAN_C, cv2.THRESH_BINARY,21,10)

# Saving the image as adaptive_output.png

# in the folder Figures.

cv2.imwrite('../Figures/adaptive_output.png', b)

In the above code, adaptive thresholding is performed using blocks

of size 40-by-40. The parameter C is set to 10. The method used is

mean thresholding. The image in Figure 8.5(a) is the input image. The

light region is non-uniform and it varies from dark on the left edge to

bright on the right edge. Otsu’s method uses a single threshold for the
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entire image and hence does not segment the image properly (Figure

8.5(b)). The text in the left section of the image is obscured by the

dark region. The adaptive thresholding method (Figure 8.5(c)) uses a

local threshold and segments the image accurately.

(a) Input image. (b) Output using Otsu’s method.

(c) Output using adaptive thresh-
olding.

FIGURE 8.5: An example of thresholding with adaptive vs. Otsu
thresholding.

8.3 Region-Based Segmentation

A region is a group or collection of pixels that have similar proper-

ties sharing the same characteristics. The characteristics can be pixel

intensities, texture, or some other physical feature.

Previously, we have used a threshold obtained from a histogram to

segment the image. In this section we demonstrate techniques that are

based on the region of interest. In Figure 8.3, the objects are labeled

as R1, R2, R3, R4 and the background as R5.
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FIGURE 8.6: An example of an image for region-based segmentation.

The different regions constitute the image,

5⋃
i=1

Ri = I where I rep-

resents the whole image. No two regions overlap, Ri ∩Rj = ∅ for i 6= j.

Every region is connected, with I representing the image and Ri rep-

resenting the regions for i = 1 to n. We can now formulate basic rules

that govern the region-based segmentation.

1. All the regions combined should equal the image,

n⋃
i=1

Ri = I.

2. Each region, Ri is connected for i = 1 to n.

3. No two regions overlap, Ri ∩Rj = ∅.

To segment the regions, we need some a priori information. This a

priori information is the seed pixels, pixels that are part of the fore-

ground. The seed pixels grow by considering the pixels in their neigh-

borhood that have similar properties. This process connects all the

pixels in a region with similar properties. The region-growing process

will terminate when there are no more pixels to add that share the

same characteristics of the region.

It might not always be possible to have a priori knowledge of the

seed pixels. In such cases, a list of characteristics of different regions

should be considered. Then pixels that satisfy the characteristics of a

particular region will be grouped together. The most popular region-

based segmentation method is watershed segmentation.
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8.3.1 Watershed Segmentation

To perform watershed segmentation, let’s consider a grayscale image

as an example. The grayscale values of the image represent the peaks

and valleys of the topographic terrain of the image. The lowest val-

ley in an object is the absolute minimum. The highest grayscale value

corresponds to the highest point in the terrain. The watershed segmen-

tation can be explained as follows: all the points in a region where, if

a drop of water was place,d will settle to the absolute minimum are

known as the catchment basin of that minimum or watershed. If water

is supplied at a uniform rate from the absolute minimum in an object,

as water fills up the object, at some point water will overflow into other

objects. Dams are constructed to stop water from overflowing into other

objects/regions. These dams are the watershed segmentation lines. The

watershed segmentation lines are edges that separate one object from

another.

Now let us look at how the dams are constructed. For simplicity, let

us assume that there are two regions. Let R1 and R2 be two regions and

let C1 and C2 be the corresponding catchment basins. Now for each time

step, the regions that constitute the catchment basins are increased.

This can be achieved by dilating the regions with a structuring element

of size 3-by-3 (say). If C1 and C2 become one connected region in the

time step n, then at the time step n − 1 the regions C1 and C2 were

disconnected. The dams or the watershed lines can be obtained by

taking the difference of images at time steps n and n− 1.

In 1992, F. Meyer proposed an algorithm to segment color images,

[Mey92], [Mey94]. Internally, cv2.watershed uses Meyer’s flooding algo-

rithm to perform watershed segmentation. Meyer’s algorithm is out-

lined below:

1. The original input image and the marker image are given as

inputs.

2. For each region in the marker image, its neighboring pixels are

placed in a ranked list according to their gray levels.
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3. The pixel with the highest rank (highest gray level) is compared

with the labeled region. If the pixels in the labeled region have

the same gray level as the given pixel, then the pixel is included in

the labeled region. Then a new ranked list with the neighbors is

formed. This step contributes to the growth of the labeled region.

4. The above step is repeated until there are no elements in the list.

Prior to performing watershed segmentation, the image has to be

preprocessed to obtain a marker image. Since the water is supplied from

catchment basins, these basin points are guaranteed foreground pixels.

The guaranteed foreground pixel image is known as the marker image.

The preprocessing operations that should be performed before

watershed segmentation are as follows:

1. Foreground pixels are segmented from the background pixels.

2. Erosion is performed to obtain foreground pixels only. Erosion is

a morphological operation in which the background pixels grow

and foreground pixels shrink. Erosion is explained in detail in

Chapter 9, “Morphological Operations” in Sections 9.4 and 9.7.

3. Distance transform creates an image where every pixel contains

the value of the distance between itself and the nearest back-

ground pixel. Thresholding is done to obtain the pixels that are

farthest away from the background pixels and are guaranteed to

be foreground pixels.

4. All the connected pixels in a region are given a value in the pro-

cess known as labeling. The labeled image is used as a marker

image. Further explanation of labeling can be found in Chapter

10, “Image Measurements” in Section 10.2.

These operations along with the watershed are used in the

cv2.watershed code provided below.
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All the cv2 functions that are used for preprocessing such as erode,

threshold, distance transform, and watershed are explained below. More

detailed documentation can be found at [Ope20a]. This will be followed

by the Python program using cv2 module.

The cv2 function for erosion is as follows:

cv2.erode(input, element, iterations, anchor,

borderType, borderValue)

Necessary arguments:

input is the input image.

iterations is an integer value corresponding to

the number of times erosion is performed.

Optional arguments:

element is the structuring element. The default

value is None. If element is specified, then anchor

is the center of the element. The default value

is (-1,-1).

borderType is similar to mode argument in convolve

function. If borderType is constant then borderValue

should be

specified.

Returns: An eroded image.

The cv2 function for thresholding is given below:

cv2.threshold(input, thresh, maxval, type)
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Necessary arguments:

input is an input array. It can be either 8 bit

or 32 bit.

thresh is the threshold value.

Optional arguments:

maxval should be assigned and will be used when the

threshold type is THRESH_BINARY or THRESH_BINARY_INV.

This was discussed earlier.

type can be either THRESH_BINARY, THRESH_BINARY_INV,

THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV.

Also, THRESH_OTSU can be added to any of the above.

For example, in THRESH_BINARY+THRESH_OTSU the

threshold value is determined by Otsu's method and

then that threshold value will be applied based on

the rules defined by THRESH_BINARY. The pixels with

intensities greater than the threshold value will

be assigned the maxval and the

rest will be assigned 0.

Returns: Output array same size and type as input array.

The cv2 function for distance transform is given below:

cv2.DistTransform(image, distance_Type, mask_Size,

labels, labelType)
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Necessary arguments:

image is a 8-bit single channel image.

distance_Type is used to specify the distance formula.

It can be either CV_DIST_L1 (given by 0), CV_DIST_L2

(given by 1) or CV_DIST_C (given by 2). The distance

between (x,y) and (t,s) for CV_DIST_L1 is |x-t|+|y-s|

while CV_DIST_L2 is the Euclidean distance and

CV_DIST_C is the max{|x-t|,|y-s|}.

The size for the mask can be specified by mask_Size.

If mask_Size is 3, a 3-by-3 mask is considered.

Optional arguments:

A 2D array of labels can be returned using labels.

The type of the above array of labels can be specified

by labelType. If labelType is DIST_LABEL_CCOMP,

then each connected component will be assigned the

same label. If labelType is DIST_LABEL_PIXEL then

each connected component will have its own label.

Returns: Output is a distance image same size as the input.

The cv2 function for watershed is given below:

cv2.watershed(image, markers)

Necessary arguments:

image is the 8-bit 3 channel color image. Internally, the
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function converts the color image to grayscale.

Only accepts color image as input.

markers is a labelled 32-bit single channel image.

Returns:

Output is a 32 bit image. Output is overwritten on the

marker image.

The cv2 code for the watershed segmentation is given below. The

various Python statements leading to the call to the cv2.watershed func-

tion create the marker image. The image in Figure 8.7(a)) shows dyed

osteoblast cells cultured in a bottle. The image is read and thresholded

(Figure 8.7(b)) to obtain foreground pixels. The image is converted

to a grayscale image before thresholding. The image is eroded (Fig-

ure 8.7(c)) to ensure that guaranteed foreground pixels are obtained.

Distance transform (Figure 8.7(d)) and the corresponding threshold-

ing (Figure 8.7(e)) ensures the guaranteed foreground pixel image (i.e.,

marker image) is obtained. The marker image is used in the watershed

to obtain the image shown in Figure 8.7(f). The inputs for the cv2

watershed function are input image as a color image and the marker

image.

import cv2

from scipy.ndimage import label

# Opening the image.

a = cv2.imread('../Figures/cellimage.png')

# Converting to grayscale.

a1 = cv2.cvtColor(a, cv2.COLOR_BGR2GRAY)

# Thresholding the image to obtain cell pixels.

thresh,b1 = cv2.threshold(a1, 0, 255,

cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
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# Since Otsu's method has over segmented the image

# erosion operation is performed.

b2 = cv2.erode(b1, None,iterations = 2)

# Distance transform is performed

dist_trans = cv2.distanceTransform(b2, 2, 3)

# Thresholding the distance transform image to obtain

# pixels that are foreground.

thresh, dt = cv2.threshold(dist_trans, 1,

255, cv2.THRESH_BINARY)

# Performing labeling.

labelled, ncc = label(dt)

# Performing watershed.

cv2.watershed(a, labelled)

# Saving the image as watershed_output.png

cv2.imwrite('../Figures/watershed_output.png', labelled)

8.4 Contour-Based Segmentation

8.4.1 Chan-Vese Segmentation

Chan-Vese ([CV99]) is a region segmentation technique. It poses

segmentation as an optimization problem. It allows segmentation even

if the boundary between objects is not well defined.

Consider an image f(x) where x could have multiple dimensions.

Also assume there exists a curve (C) on this image. We will find the

best fitting curve by minimizing Equation 8.5. The first term ensures

that the curve has the minimum length. The second term ensures that

the curve has the smallest area. The third term is evaluated only inside

the curve and it ensures that all pixels inside the curve have a pixel

value close to c1. The fourth term is evaluated only on the outside of
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(a) Input image. (b) Thresholded image using
Otsu’s.

(c) Image after erosion. (d) Distance transform image.

(e) Marker image. (f) Output of watershed.

FIGURE 8.7: An example of watershed segmentation. Original image
reprinted with permission from Dr. Susanta Hui, Masonic Cancer Cen-
ter, University of Minnesota.
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the curve and it ensures that all pixels outside the curve have a pixel

value close to c2.

argmin
c1,c2,C

µLength(C) + ν InsideArea(C) + λ1

∫
|f(x)− c1|+ λ2

∫
|f(x)− c2|

(8.5)

The term µ determines the smoothness of the curve. A higher value

produces a smoother curve while a smaller value close to zero produces

a rough curve. In the creation of a smoother curve, smaller regions are

excluded while the rough curve includes smaller objects.

Typically, λ1 and λ2 are equal in weighting the region inside and

outside equally. The default value for both is 1 in scikit-image.

The implementation of Chan-Vese in scikit-image does not include

the second term in Equation 8.5.

The following program demonstrates segmentation using the Chan-

Vese algorithm. The image is read and converted to gray-scale, as scikit-

image can only perform this segmentation on gray-scale images. The

image is supplied to the chan vese function with 3 possible values (0.1,

0.3, 0.6) for µ. The rest of the code plots the input image and the

output image corresponding to the various µ.

from PIL import Image

import matplotlib.pyplot as plt

from skimage.segmentation import chan_vese

import numpy as np

# Opening the image and converting it into grayscale

img = Image.open('../Figures/imageinverse_input.png').

convert('L')

img = np.array(img)

cv1 = chan_vese(img, mu=0.1)

cv2 = chan_vese(img, mu=0.3)

cv3 = chan_vese(img, mu=0.6)



190 Image Processing and Acquisition using Python

fig, axes = plt.subplots(2, 2, figsize=(8, 8))

ax = axes.flatten()

ax[0].imshow(img, cmap="gray")

ax[0].set_axis_off()

ax[0].set_title("Original Image", fontsize=12)

ax[1].imshow(cv1, cmap="gray")

ax[1].set_axis_off()

ax[1].set_title("mu=0.1", fontsize=12)

ax[2].imshow(cv2, cmap="gray")

ax[2].set_axis_off()

ax[2].set_title("mu=0.3", fontsize=12)

ax[3].imshow(cv3, cmap="gray")

ax[3].set_axis_off()

ax[3].set_title("mu=0.6", fontsize=12)

plt.show()

The output of the program is in Figure 8.8. The top left image is

the original image. The top right is the segmentation with µ = 0.1. The

bottom left is the segmentation with µ = 0.3 and the bottom right is

the segmentation with µ = 0.6.

As discussed earlier, a smaller value of µ (such as 0.1) produces a

smoother curve and only finds a larger object in the segmentation. The

larger values of µ (such as 0.6) produce a rough curve and find smaller

objects as well.
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FIGURE 8.8: Chan-Vese segmentation and the effect of µ.

8.5 Segmentation Algorithm for Various Modalities

So far, we have discussed a few segmentation algorithms without

concerning ourselves with the imaging modalities. Each imaging modal-

ity has unique characteristics that need to be understood in order to

create a good segmentation algorithm.



192 Image Processing and Acquisition using Python

8.5.1 Segmentation of Computed Tomography Image

The details of CT imaging are discussed in Chapter 13, “X-Ray

and Computer Tomography.” In a CT image, the pixel intensities are

in Hounsfield units. The pixel intensities have physical significance as

they are a map of the electron density of that material. The units are

the same whether we image a human being, a mouse or a dog. Thus,

a pixel intensity of +1000 always corresponds to a material that has

electron density similar to bone. A pixel intensity of −1000 always cor-

responds to a material that has electron density similar to air. Hence,

the segmentation process becomes simpler in the case of CT. To seg-

ment bone in a CT image, a simple thresholding such as assigning all

pixels with values greater than +1000 being assigned 1 will suffice. A

list of the range of pixel values corresponding to various materials such

as soft tissue, hard tissue, etc., are available and hence simplify the

segmentation process. This, however, assumes that the CT image has

been calibrated to a Hounsfield unit. If not, traditional segmentation

techniques have to be used.

8.5.2 Segmentation of MRI Image

The details of MRI are discussed in Chapter 14, “Magentic Reso-

nance Imaging.” MRI images do not have a standardized unit and hence

need to be segmented using more traditional segmentation techniques

discussed in this chapter.

8.5.3 Segmentation of Optical and Electron Microscope

Images

The details of optical and electron microscope are discussed in

Chapter 15, “Light Microscopes” and Chapter 16, “Electron Micro-

scopes,” respectively. In CT and MRI imaging of patients, the shape,

size and position of organs remain similar across patients. In the case of

optical and electron microscopes, two images acquired from the same

specimen may not look alike and hence traditional techniques have to

be used.
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8.6 Summary

• Segmentation is a process of separating an image into multiple

logical segments.

• Histogram-based method determines the threshold based on a

histogram.

• Otsu’s method determines the threshold that maximizes the vari-

ance between groups or minimizes the variance within a group.

• The threshold that maximizes the entropy between the fore-

ground and background is the Renyi entropy threshold.

• The adaptive thresholding method segments the image by divid-

ing the image into sub-images and then applying thresholding to

each sub-image.

• Watershed segmentation is used when there are overlapping

objects in an image.

• Chan-Vese segmentation is an optimization problem that draws

a curve with the smallest length and area.

8.7 Exercises

1. In this chapter, we discussed a few segmentation methods. Con-

sult the books listed as references and explain at least three more

methods including details of the segmentation process, its advan-

tages and disadvantages.
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2. Consider any of the images used in histogram-based segmentation

in this chapter. Rotate or translate the image using ImageJ by

various angles and distance, and for each case segment the image.

Are the threshold values different for different levels of rotation

and translation? If there are differences in threshold value, explain

the cause of the changes.

3. What happens if you zoom into the image using ImageJ while

keeping the image size the same? Try different zoom levels (2X,

3X, and 4X). Explain the cause of change in threshold value.

Hint: This changes the content of the image significantly and

hence the histogram and the segmentation threshold.

4. In the various segmentation results, you will find spurious objects.

Suggest a method to remove these objects.

Hint: Morphology.



Chapter 9

Morphological Operations

9.1 Introduction

So far, we have discussed the various methods for manipulating indi-

vidual pixels in the image through filtering, Fourier transform, etc. An

important part of image analysis involves understanding the shape of

the objects in that image through morphological operations. Morphol-

ogy means form or structure. In morphological operations, the goal is to

transform the structure or form of the objects using a structuring ele-

ment. These operations change the shape and size of the objects in the

image. Morphological operations can be applied on binary, grayscale,

and color images. We omit morphology on color images in this chapter,

as most bio-medical images are grayscale or binary images. We begin

with basic morphological operations such as dilation, erosion, opening,

and closing and then progress to compound operations such as hit-or-

miss and skeletonization.

9.2 History

Morphology was introduced by Jean Serra in the 1960s as a part

of his Ph.D. thesis under Georges Matheron at the Ecole des Mines

de Paris, France. Serra applied the techniques he developed in the

field of geology. With the arrival of modern computers, morphology

195
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began to be applied on images of all types such as black and white,

grayscale and color. Over the next several decades, Serra devel-

oped the formalism for applying morphology on various data types

like images, videos, meshes, etc. More information can be found in

[Dou92],[HBS13],[MB90],[NT10],[Ser82],[SS94],[Soi04].

9.3 Dilation

For this section, we will assume that there is a binary input image.

The foreground pixels have a value of 1 while the background pixels

have a value of 0. The dilation operation allows the foreground pixels

in an image to grow or expand. Hence this operation will also fill small

holes in an object. It is also used to combine objects that are close

enough to each other but are not connected.

The dilation of the image I with a structuring element S is denoted

as I ⊕ S.
Figure 9.1(a) is a binary image of size 4-by-5. The foreground pixels

have intensity of 1 while background pixels have intensity of 0. The

structuring element, Figure 9.1(b), is used to perform the dilation. The

dilation process is explained in detail in the following steps:

1. Figure 9.1(a) is the binary image with 0’s and 1’s as the input.

2. The structuring element that will be used for dilation is shown in

Figure 9.1(b). The shaded square on the 1 represents the reference

pixel or origin of the structuring element. In this case the struc-

turing element is of size 1-by-2. Both values in the structuring

element play an important role in the dilation process.

3. To better illustrate the dilation process, we consider the first row

in Figure 9.1(a) and apply the structuring element on each pixel

in that row.
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FIGURE 9.1: An example of binary dilation: (a) binary image for
dilation, (b) structuring element, (c), (d), (e) application of dilation at
various points in the image, and (f) final output after dilation.

4. With this structuring element, we can only grow the boundary by

one more pixel to the right. If we considered a 1-by-3 structuring
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element with all 1’s and the origin of the structuring element at

the center, then the boundary will grow by one pixel each in the

left and right directions. Note that the morphological operations

are performed on the input image and not on the intermediate

results. The output of the morphological operation is the aggre-

gate of all the intermediate results.

5. The structuring element is placed over the first pixel of the row

and the pixel values in the structuring element are compared with

the pixel values in the image. Since the reference value in the

structuring element is 1, whereas the underlying pixel value in the

image is 0, the pixel value in the output image remains unchanged.

In Figure 9.1(c) the left side is the input to the dilation process

and the right side is the intermediate result.

6. The structuring element is then moved one pixel over. Now the

reference pixel in the structuring element and the image pixel

value match. Since the value next to the reference value also

matches with the 1 in the underlying pixel value, the pixel values

in the output image do not change, and the output is shown in

Figure 9.1(d).

7. The structuring element is then moved one pixel over. Now the

reference pixel in the structuring element and the pixel value

match. But the value next to the reference value does not match

with the 0 in the underlying pixel value; the pixel value in the

intermediate result will be changed to 1 as in Figure 9.1(e).

8. If the structuring element is then moved one pixel over, we will

fall outside the image bounds.

9. This process is repeated on every pixel in the input image. The

output of the dilation process on the whole image is given in

Figure 9.1(f).
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10. The process can be iterated multiple times using the same struc-

turing element. In such case, the output from the previous itera-

tion (Figure 9.1(f)) is used as input to the next iteration.

In summary, the dilation process first detects the boundary pixels of

the object and it grows the boundary by a certain number of pixels (1

pixel to the right in this case). By repeating this process through mul-

tiple iterations or by using a large structuring element, the boundary

pixels can grow by several pixels.

The following is the Python function for binary dilation:

scipy.ndimage.morphology.binary_dilation(input,

structure=None,iterations=1,mask=None,

output=None,border_value=0,

origin=0,brute_force=False)

Necessary arguments:

input = input image

Optional arguments:

structure is the structuring element used for

the dilation, which was discussed earlier. If no

structure is provided, scipy assumes a square

structuring element of value 1.

The data type is ndarray.

iterations are the number of times the dilation

operation is repeated. The default value is 1.

If the value is less than 1, the process is

repeated until there is no change in results.

The data type is integer or float.

mask is an image, with the same size as the

input image with value of either 1 or 0.
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Only points in the input image corresponding

to value of 1 in the mask image are modified

at each iteration. This is useful, if only a

portion of the input image needs to be dilated.

The data type is an ndarray.

origin determines origin of the structuring

element, structure. The default value 0

corresponds to a structuring element whose

origin (reference pixel) is at the center.

The data needs to be either int for 1D

structuring element or tuples of int for

multiple dimension. Each value in the tuple

corresponds to different dimensions in the

structuring element.

border_value will be used for the border pixels

in the output image. It can either be 0 or 1.

Returns: output as an ndarray.

The following is Python code that takes an input image and per-

forms dilation with 5 iterations using the binary dilation function:

from PIL import Image

import scipy.ndimage as snd

import numpy as np

import cv2

# Opening the image and converting it to grayscale.

a = Image.open('../figures/dil_image.png').convert('L')

a = np.array(a)

# Performing binary dilation for 5 iterations.
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b = snd.morphology.binary_dilation(a, iterations=5)

# Saving the image as 8-bit as b is a

# binary image of dtype=bool

cv2.imwrite('../figures/di_binary.png', b*255)

Figure 9.2(a) is the input image for binary dilation with 5 iterations

and the corresponding output image is given in Figure 9.2(b). Since

binary dilation makes the foreground pixels dilate or grow, the small

black spots (background pixels) inside the white regions (foreground

pixels) in the input image disappear.

(a) Black and white image for dila-
tion.

(b) Output image after dilation
with 5 iterations.

FIGURE 9.2: An example of binary dilation.

9.4 Erosion

Erosion is used to shrink objects in an image by removing pixels

from the boundary of that object. Erosion is opposite of dilation.

The erosion of the image I and with a structuring element S is

denoted as I 	 S.
Let us consider the same binary input and the structuring element

that was considered for dilation to illustrate erosion. Figure 9.3(a) is a

binary image of size 4 by 5. The structuring element 9.3(b) is used to
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FIGURE 9.3: An example of binary erosion: (a) binary image for ero-
sion, (b) structuring element, (c), (d), (e) application of erosion at
various points in the image, and (f) final output after erosion.

perform the erosion. The erosion process is explained in detail in the

following steps:
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1. Figure 9.3(a) is an example of a binary image with 0’s and 1’s.

The background pixels are represented by 0 and the foreground

by 1.

2. The structuring element that will be used for erosion is shown in

Figure 9.3(b). The shaded square on the 1 represents the reference

pixel or origin of the structuring element. In this case the struc-

turing element is of size 1-by-2. Both values in the structuring

element play an important role in the erosion process.

3. Consider the first row in Figure 9.3(a) and apply the structuring

element on each pixel of the row.

4. With this structuring element, we can only erode the boundary

by one pixel to the right.

5. The structuring element is placed over the first pixel of that row

and the pixel values in the structuring element are compared with

the pixel values in the image. Since the reference value in the

structuring element is 1, whereas the underlying pixel value in the

image is 0, the pixel value remains unchanged. In Figure 9.3(c),

the left side is the input to the erosion process and the right side

is the intermediate output.

6. The structuring element is then moved one pixel over. The refer-

ence pixel in the structuring element and the image pixel value

match. Since the value next to the reference value also matches

with the 1 in the underlying pixel value, the pixel values in the

output image do not change, as shown in Figure 9.3(d).

7. The structuring element is then moved one pixel over. The refer-

ence pixel in the structuring element and the image pixel value

match, but the non-reference value does not match with the 0

in the underlying pixel value. The structuring element is on the

boundary. Hence, the pixel value below the reference value is

replaced with 0, as shown in Figure 9.3(e).
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8. If the structuring element is then moved one pixel over, we will

fall outside the image bounds.

9. This process is repeated on every pixel in the input image. The

output of the erosion process on the whole image is given in Figure

9.3(f).

10. The process can be iterated multiple times using the same struc-

turing element. In such case, the output from the previous itera-

tion (Figure 9.3(f)) is used as input to the next iteration.

In summary, the erosion process first detects the boundary pixels

of the object and shrinks the boundary by a certain number of pixels

(1 pixel from the right in this case). By repeating this process through

multiple iterations or by using a larger structuring element, the bound-

ary pixels can be shrunk by several pixels.

The Python function for binary erosion is given below. The argu-

ments for binary erosion are the same as the binary dilation arguments

listed previously.

scipy.ndimage.morphology.binary_erosion(input,

structure=None,iterations=1,mask=None,

output=None,border_value=0,origin=0,

brute_force=False)

The Python code for binary erosion is given below.

from PIL import Image

import scipy.ndimage as snd

import numpy as np

import cv2

# Opening the image and converting it to grayscale.

a = Image.open('../figures/er_image.png').convert('L')
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a = np.array(a)

# Performing binary erosion for 20 iterations.

b = snd.morphology.binary_erosion(a,iterations=20)

# Saving the image as 8-bit as b is a

# binary image of dtype=bool

cv2.imwrite('../figures/er_binary_output_20.png', b*255)

Figures 9.4(b) and 9.4(c) demonstrate the binary erosion of 9.4(a)

using 10 and 20 iterations respectively. Erosion removes boundary pix-

els and hence after 10 iterations, the two circles are separated creating

a dumbbell shape. A more profound dumbbell shape is obtained after

20 iterations.

(a) Input image for
erosion.

(b) Output image
after 10 iterations.

(c) Output image
after 20 iterations.

FIGURE 9.4: An example of binary erosion.

9.5 Grayscale Dilation and Erosion

Grayscale dilation and erosion are similar to their binary counter-

parts. In binary dilation and erosion, the foreground pixels in the input

image have a pixel value of 1 while the background pixels have a pixel

value of 0. In grayscale dilation and erosion, the foreground pixels and

background pixels can take pixel values in the grayscale range. For

example, we can supply an 8-bit image as an input.
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In grayscale erosion, the bright pixel values will shrink and the

dark pixels increase or grow. Small bright objects will be eliminated

by grayscale erosion and dark objects will grow. The effect of erosion

can be observed in region(s) where there is a change in the grayscale

intensity.

The following is the Python function for grayscale erosion.

scipy.ndimage.morphology.grey_erosion(input,

footprint)

Necessary arguments:

input has to be an ndarray.

Optional arguments:

footprint is a structure element that is an ndarray of

integers.

Returns:

An ndarray.

The Python code for grayscale erosion is given below.

import numpy as np

from PIL import Image

import scipy.ndimage

# Opening the image and converting it into grayscale.

a = Image.open('../figures/sem3.png').convert('L')

# Creating a structuring element.

footprint = np.ones((15, 15))

# Performing grey erosion.

b = scipy.ndimage.morphology.grey_erosion(a,

footprint=footprint)
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# Converting ndarray to image.

c = Image.fromarray(b)

# Saving the image.

c.save('../figures/grey_erosion_output_15.png')

Figures 9.5(b) and 9.5(c) demonstrate the grayscale erosion of the

image in Figure 9.5(a) using a 15-by-15 structuring element and a 25-

by-25 structuring element respectively. Grayscale erosion increases the

number of background pixels. In Figure 9.5(a), the foreground has

bright regions, and there are small black holes, thin black lines, and

dark holes. On the top right, the input image has a hole. After grayscale

erosion with a 15-by-15 structuring element, notice that the hole on

the top right, has shrunk. Also, the foreground pixels are no longer

strongly connected. Finally, prominent black horizontal lines are intro-

duced. Grayscale erosion with a 25-by-25 structuring element further

shrinks the hole, the foreground pixels are further disconnected, and

the black horizontal lines are prominent.

(a) Input image for
grayscale erosion.

(b) Output image
with a 15-by-15
structuring element.

(c) Output image
with a 25-by-25
structuring element.

FIGURE 9.5: An example of grayscale erosion.

In grayscale dilation, bright pixels increase or grow and dark pixels

decrease or shrink. The effect of dilation can be clearly observed in a

region(s) where there is a change in the grayscale intensity. Similar to

binary dilation, grayscale dilation fills holes.
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The following is the Python function for grayscale dilation.

scipy.ndimage.morphology.grey_dilation(input,

footprint)

Necessary arguments:

input has to be an ndarray.

Optional arguments:

footprint is a structure element that is an ndarray of

integers.

Returns:

An ndarray.

The Python code for grayscale dilation is given below.

import numpy as np

from PIL import Image

import scipy.ndimage

# Opening the image and converting it into grayscale.

a = Image.open('../figures/sem3.png').convert('L')

# Creating a structuring element.

footprint = np.ones((15,15))

# Performing grey dilation.

b = scipy.ndimage.morphology.grey_dilation(a,

footprint=footprint)

# Converting ndarray to image.

c = Image.fromarray(b)

# Saving the image.

c.save('../figures/grey_dilation_output_15.png')
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Figures 9.6(b) and 9.6(c) demonstrate the grayscale dilation of the

image in Figure 9.6(a) using a 15-by-15 structuring element and a 25-

by-25 structuring element respectively. Grayscale dilation increases the

number of foreground pixels. In Figure 9.6(a), apart from the fore-

ground pixels that are bright, there are small black holes, thin black

lines and dark holes. On the top right, there is a hole. After grayscale

dilation with a 15-by-15 structuring element, notice that the hole in the

top right grew a bit, the foreground pixels became thick and some black

lines were removed. After grayscale dilation with a 25-by-25 structuring

element, the hole in the top right grew bigger, the foreground pixels are

thicker and the lines disappear.

(a) Input image for
grayscale dilation.

(b) Output image
with a 15-by-15
structuring element.

(c) Output image
with a 25-by-25
structuring element.

FIGURE 9.6: An example of grayscale dilation.

9.6 Opening and Closing

Opening and closing operations are complex morphological opera-

tions. They are obtained by combining dilation and erosion. Opening

and closing can be performed on binary, grayscale and color images.

Opening is defined as erosion followed by dilation of an image. The

opening of the image I with a structuring element S is denoted as

I ◦ S = (I 	 S)⊕ S (9.1)
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Closing is defined as dilation followed by erosion of an image. The

closing of the image I with a structuring element S is denoted as

I • S = (I ⊕ S)	 S (9.2)

The following is the Python function for opening:

scipy.ndimage.morphology.binary_opening(input,

structure=None, iterations=1, output=None, origin=0)

Necessary arguments:

input = array

Optional arguments:

structure is the structuring element used for

the dilation, which was discussed earlier. If no

structure is provided, scipy assumes a square

structuring element of value 1.

The data type is ndarray.

iterations are the number of times the opening is

performed (erosion followed by dilation). The

default value is 1. If the value is less than 1,

the process is repeated until there is no change

in results. The data type is integer or float.

origin determines origin of the structuring element.

The default value 0 corresponds to a

structuring element whose origin (reference pixel)

is at the center. The data needs to be either int

for 1D structuring element or tuples of int for

multiple dimension. Each value in the tuple
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corresponds to different dimensions in the

structuring element.

Returns: output as an ndarray

The Python code for binary opening with 5 iterations is given below.

from PIL import Image

import scipy.ndimage as snd

import numpy as np

import cv2

# Opening the image and converting it to .

a = Image.open('../figures/dil_image.png').convert('L')

a = np.array(a)

# Defining the structuring element.

s = [[0,1,0],[1,1,1], [0,1,0]]

# Performing the binary opening for 5 iterations.

b = snd.morphology.binary_opening(a, structure=s,

iterations=5)

# Saving the image as 8-bit as b is a

# binary image of dtype=bool

cv2.imwrite('../figures/opening_binary.png', b*255)

Figure 9.7(b) is the output of the binary opening with 5 iterations.

Binary opening has altered the boundaries of the foreground objects.

The size of the small black holes inside the objects has also changed.

The Python function for binary closing is given below. The argu-

ments for binary closing are the same as the binary opening arguments.

scipy.ndimage.morphology.binary_closing(input,

structure=None, iterations=1,output=None, origin=0)
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(a) Input image for opening. (b) Output image after opening.

FIGURE 9.7: An example of binary opening with 5 iterations.

The Python code for closing is given below and an example is given

in Figure 9.8. The closing operation has resulted in filling in the holes,

as shown in Figure 9.8(b).

from PIL import Image

import scipy.ndimage as snd

import numpy as np

import cv2

# Opening the image and converting it to grayscale.

a = Image.open('../figures/dil_image.png').convert('L')

a = np.array(a)

# Defining the structuring element.

s = [[0,1,0],[1,1,1], [0,1,0]]

# Performing the binary closing for 5 iterations.

b = snd.morphology.binary_closing(a,structure=s,

iterations=5)

# Saving the image as 8-bit as b is a

# binary image of dtype=bool

cv2.imwrite('../figures/closing_binary.png', b*255)

It can be observed that the black holes in the input image are

elongated after the opening operation, while the closing operation on

the same input filled the holes.
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(a) Input image for closing. (b) Output image after closing.

FIGURE 9.8: An example of binary closing with 5 iterations.

9.7 Grayscale Opening and Closing

Grayscale opening and closing are similar to their binary counter-

parts.

Erosion followed by dilation results in opening.

The following is the Python function for grayscale opening.

scipy.ndimage.morphology.grey_opening(input,

footprint)

Necessary arguments:

input has to be an ndarray.

Optional arguments:

footprint is a structure element that is an ndarray of

integers.

Returns:

An ndarray.
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The Python code for grayscale erosion is given below.

import numpy as np

from PIL import Image

import scipy.ndimage

# Opening the image and converting it into grayscale.

a = Image.open('../figures/adaptive_example1.png').

convert('L')

# Creating a structuring element.

footprint = np.ones((40,40))

# Performing grey opening.

b = scipy.ndimage.morphology.grey_opening(a,

footprint=footprint)

# Converting ndarray to image.

c = Image.fromarray(b)

# Saving the image.

c.save('../figures/grey_opening_output_40.png')

Figure 9.9(a) is the input image that we will use for grayscale open-

ing. After performing grayscale opening with a 40-by-40 structuring

element, we obtain Figure 9.9(b). Notice that the opening operation

was able to detect the regions where there was text in the input image.

(a) Input image for
grayscale opening.

(b) Output image
with a 40-by-40
structuring element.

FIGURE 9.9: An example of grayscale opening.
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Dilation followed by erosion results in closing.

The following is the Python function for grayscale closing.

scipy.ndimage.morphology.grey_closing(input,

footprint)

Necessary arguments:

input has to be an ndarray.

Optional arguments:

footprint is a structure element that is an ndarray of

integers.

Returns:

An ndarray.

The Python code for grayscale closing is given below.

import numpy as np

from PIL import Image

import scipy.ndimage

# Opening the image and converting it into grayscale.

a = Image.open('../figures/adaptive_example1.png').

convert('L')

a = np.asarray(a)

# Creating a structuring element.

fp = np.ones((40,40))

# Performing grey closing.

bg = scipy.ndimage.morphology.grey_closing(a,

footprint=fp)

# bg represents the background.
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# We will subtract bg from a to remove the background in a.

bg_free = (a.astype(np.float64) - bg.astype(np.float64))

# We rescale bg_free to 0 to 255.

denom = (bg_free.max()-bg_free.min())

bg_free_norm = (bg_free - bg_free.min())*255/denom

# Converting bg_free_norm to uint8.

bg_free_norm = bg_free_norm.astype(np.uint8)

# Converting bg_free_norm and bg to images.

bg_free_norm = Image.fromarray(bg_free_norm)

bg = Image.fromarray(bg)

# Saving the background image.

bg.save('../figures/grey_closing_out_40.png')

# Saving the bg_free_norm image.

bg_free_norm.save('../figures/closing_bgfree.png')

Figure 9.10(a) is the input image that we consider for grayscale

closing. Figure 9.10(b) was obtained after applying grayscale closing

with a 40-by-40 structuring element. This represents the background of

the original image. When we subtract the background image from the

original image, then we obtain Figure 9.10(c). Notice that after subtrac-

tion, the background is uniform. We have hence achieved background

subtraction using grayscale closing.

(a) Input image for
grayscale closing.

(b) Output image
with a 40-by-40
structuring element.

(c) The difference
between the left image
and the middle image.

FIGURE 9.10: An example of grayscale closing.
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9.8 Hit-or-Miss

Hit-or-miss transformation is a morphological operation used in

finding specific patterns in an image. Hit-or-miss is used to find bound-

ary or corner pixels, and is also used for thinning and thickening, which

are discussed in the next section. Unlike the methods we have discussed

so far, this method uses more than one structuring element and all its

variations to determine pixels that satisfy a specific pattern.

Let us consider a 3-by-3 structuring element with origin at the cen-

ter. The structuring element with 0’s and 1’s shown in Table 9.1 is used

in the hit-or-miss transformation to determine the corner pixels. The

blank space in the structuring element can be filled with either 1 or 0.

TABLE 9.1: Hit-or-miss structuring element

1
0 1 1
0 0

Since we are interested in finding the corner pixels, we have to con-

sider all four variations of the structuring element in Table 9.1. The four

structuring elements given in Table 9.2 will be used in the hit-or-miss

transformation to find the corner pixels. The origin of the structuring

element is applied to all pixels in the image and the underlying pixel

values are compared. As discussed in Chapter 4 on filtering, the struc-

turing element cannot be applied to the edges of the image. So the

edges of the image are assumed to be zero in the output.

After determining the locations of the corner pixels from each struc-

turing element, the final output of hit-or-miss is obtained by performing

an OR operation on all the output images.

Let us consider a binary image in Figure 9.11(a). After perform-

ing the hit-or-miss transformation on this image with the structuring

elements in Table 9.2, we obtain the image in Figure 9.11(b). Notice
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TABLE 9.2: Variation of all structuring elements used to find corners.

1
0 1 1

0

1
1 1 0

0 0

0 0
0 1 1

1

0 0
1 1 0

1

(a) Input image for hit-or-
miss.

(b) Output image of hit-or-
miss.

FIGURE 9.11: An example of hit-or-miss transformation.

that the pixels in the output of Figure 9.11(b) are a subset of boundary

pixels.

The following is the Python function for hit-or-miss transformation:

scipy.ndimage.morphology.binary_hit_or_miss(input,

structure1=None, structure2=None,

output=None, origin1=0, origin2=None)

Necessary arguments:

input is a binary array

Optional arguments:

structure1 is a structuring element that is used

to fit the foreground of the image. If no

structuring element is provided, then scipy will

assume square structuring element of value 1.
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structure2 is a structuring element that is used

to miss the foreground of the image. If no

structuring element is provided, then scipy will

consider a complement of structuring element

provided in structure1.

origin1 determines origin of the structuring element,

structure1. The default value 0 corresponds to a

structuring element whose origin (reference pixel) is

at the center. The data needs to be either int for 1D

structuring element or tuples of int for multiple

dimension. Each value in the tuple corresponds to

different dimensions in the structuring element.

origin2 determines origin of the structuring element,

structure2. The default value 0 corresponds to a

structuring element whose origin (reference pixel) is

at the center. The data needs to be either int for 1D

structuring element or tuples of int for multiple

dimension. Each value in the tuple corresponds to

different dimensions in the structuring element.

Returns: output as an ndarray.

The Python code for hit-or-miss transform is given below.

from PIL import Image

import numpy as np

import scipy.ndimage as snd

import cv2
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# Opening the image and converting it to grayscale.

a = Image.open('../figures/thickening_input.png').

convert('L')

a = np.array(a)

# Defining the structuring element.

structure1 = np.array([[1, 1, 0], [1, 1, 1],

[1, 1, 1]])

# Performing the binary hit-or-miss.

b = snd.morphology.binary_hit_or_miss(a,

structure1=structure1)

# Saving the image as 8-bit as b is a

# binary image of dtype=bool

cv2.imwrite('../figures/hitormiss_output2.png', b*255)

In the above program, a structuring element ’structure1’ is created

with all the elements listed and used in the hit-or-miss transforma-

tion. Figure 9.12(a) is the input image for the hit-or-miss transform

and the corresponding output is in Figure 9.12(b). Notice that only a

few boundary pixels from each object in the input image are identified

by the hit-or-miss transformation. It is important to make a judicious

choice of the structuring element in the hit-or-miss transform, as dif-

ferent elements have different effect on the output.

(a) Input image for hit-or-miss (b) Output image of hit-or-
miss

FIGURE 9.12: An example of hit-or-miss transformation on a binary
image.
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9.9 Thickening and Thinning

Thickening and thinning transformations are an extension of hit-

or-miss transformation and can only be applied to binary images.

Thickening is used to grow the foreground pixels in a binary image

and is similar to the dilation operation. In this operation, the back-

ground pixels are added to the foreground pixels to make the selected

region grow or expand or thicken. The thickening operation can be

expressed in terms of the hit-or-miss operation. Thickening of the image

I with the structuring element S can be given by Equation 9.3 where

H is the hit-or-miss on image I with S,

Thickening(I) = I ∪H (9.3)

In the thickening operation, the origin of the structuring element

has to be either zero or empty. The origin of the structuring element is

applied to every pixel in the image (except the edges of the images). The

pixel values in the structuring element are compared to the underlying

pixels in the sub-image. If all the values in the structuring element

match the pixel values in the sub-image, then the underlying pixel

below the origin is set to 1 (foreground). In all other cases, it remains

unchanged. In short, the output of the thickening operation consists of

the original image and the foreground pixels that have been identified

by the hit-or-miss transformation.

Thinning is the opposite of thickening. Thinning is used to remove

selected foreground pixels from the image. Thinning is similar to ero-

sion or opening as the thinning operation will result in the shrinking

of foreground pixels. The thinning operation can also be expressed in

terms of hit-or-miss transformation. The thinning of image I with the

structuring element S can be given by Equation 9.4 where H is the

hit-or-miss of image I with S,

Thinning(I) = I −H (9.4)
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In the thinning operation, the origin of the structuring element has

to be either 1 or empty. The origin of the structuring element is applied

to every pixel in the image (except the edges of the images). The pixel

values in the structuring element are compared to the underlying pixels

in the image. If all the values in the structuring element match with the

pixel values in the image, then the underlying pixel below the origin is

set to 0 (background). In all other cases, it remains unchanged.

Both thickening and thinning operations can be applied repeatedly.

9.9.1 Skeletonization

The process of applying the thinning operation multiple times so

that only connected pixels are retained is known as skeletonization. This

is a form of erosion where most of the foreground pixels are removed

and only pixels with connectivity are retained. As the name suggests,

this method can be used to define the skeleton of the object in an image.

The following is the Python function for skeletonization:

skimage.morphology.skeletonize(image)

Necessary arguments:

image can be ndarray array of either binary or

boolean type. If the image is binary, foreground

pixels are represented by 1 and background pixels

by 0. If the image is boolean, True represents

foreground while false represents background.

Returns: output as an ndarray containing the skeleton

The Python code for skeletonization is given below.

import numpy as np

from PIL import Image
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from skimage.morphology import skeletonize

import cv2

# Opening the image and converting it to grayscale.

a = Image.open('../figures//steps1.png').convert('L')

# Converting a to an ndarray and normalizing it.

a = np.asarray(a)/np.max(a)

# Performing skeletonization.

b = skeletonize(a)

# Saving the image as 8-bit as b is a

# binary image of dtype=bool

cv2.imwrite('../figures/skeleton_output.png', b*255)

Figure 9.13(a) is the input image for the skeletonization and Fig-

ure 9.13(b) is the output image. Notice that the foreground pixels have

shrunk and only the pixels that have connectivity survive the skele-

tonization process. One of the major uses of skeletonization is in mea-

suring the length of objects. Once the foreground pixels have been

shrunk to one pixel width, the length of the object is approximately

the number of pixels after skeletonization.

(a) Input image for skele-
tonization.

(b) Output image after skele-
tonization.

FIGURE 9.13: An example of skeletonization.
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9.10 Summary

• The structuring element is important for most of the binary oper-

ations.

• Binary or grayscale dilation, closing, and thickening operations

increase the number of foreground pixels and hence close holes in

objects and aggregate nearby objects. The exact effect depends

on the structuring element. The closing operation may preserve

the size of the object while dilation does not.

• Binary or grayscale erosion, opening, and thinning operations

decrease the number of foreground pixels and hence increase the

size of holes in objects and also separate nearby objects. The exact

effect depends on the structuring element. The opening operation

may preserve the size of the object while erosion does not.

• Hit-or-miss transformation is used to determine specific patterns

in an image.

• Skeletonization is a type of thinning operation in which only con-

nected pixels are retained.

9.11 Exercises

1. Perform skeletonization on the image in Figure 9.2(a).

2. Consider an image and prove that erosion followed by dilation is

not same as dilation followed by erosion.

3. Imagine an image containing two cells that are next to each

other with a few pixels overlapping; what morphological oper-

ation would you use to separate them?
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4. You are hired as an image processing consultant to design a new

checkout machine. You need to determine the length of each veg-

etable programmatically given an image containing one of the

vegetables. Assuming that the vegetables are placed one after the

other, what morphological operation will you need?
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Chapter 10

Image Measurements

10.1 Introduction

So far we have shown methods to segment an image and obtain vari-

ous regions that share similar characteristics. The next step is to under-

stand the shape, size and geometrical characteristics of these regions.

The regions in an image may be circular, such as an image of coins,

or edges in a building. In some cases, the regions may not have simple

geometrical shapes like circles, lines, etc. Hence radius, slope, etc., alone

do not suffice to characterize the regions. An array of properties such

as area, bounding box, central moments, centroid, eccentricity, Euler

number, etc., are needed to describe shapes of regions.

In this chapter we begin the discussion with the label function that

allows numbering each region uniquely, so that the ’regionprops’ func-

tion can be used to obtain the characteristics. This is followed by the

Hough transform for characterizing lines and circles. We will discuss a

method for counting regions or objects using template matching. We

conclude with a discussion of FAST and Harris corner.

227
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10.2 Labeling

Labeling is used to identify different objects in an image. The image

has to be segmented before labeling can be performed. In a labeled

image, all pixels in a given object have the same value. For example, if

an image comprises four objects, then in the labeled image, all pixels

in the first object have a value 1, etc.

The Python function for labeling is given below.

skimage.morphology.label(image)

Necessary arguments:

image is the segmented image as an ndarray.

Returns: output labelled image as an ndarray.

The Python function for obtaining geometrical characteristics of

regions is regionprops. A labeled image is used as an input image to

this function. Some of the parameters for regionprops are listed below.

The complete list can be found at [Si20].

skimage.measure.regionprops

(label_image)

Necessary arguments:

label_image is a labelled image as an ndarray.

Returns:

A list of RegionProperties.

Let rprops be a list of region properties.

The rprops[0].area will return the
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area of rprops[0], the first region.

The rprops[0].bbox will return the bounding

box of rprops[0].

The following is the Python code for obtaining the properties of

various regions using regionprops. The input image is read and thresh-

olded using Otsu’s method. The various objects are labeled using the

label function. At the end of this process, all pixels in a given object

have the same pixel value. The labeled image is then given as an input

to the regionprops function. The regionprops function calculates the

area, centroid and bounding box for each of these regions. Finally, a

loop is used to iterate through every region in regionprops output. For

each region, the centroid and bounding box are marked on the image

using matplotlib functions.

import numpy

import cv2

from PIL import Image

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches

from skimage.morphology import label

from skimage.measure import regionprops

from skimage.filters.thresholding import threshold_otsu

# Opening the image and converting it to grayscale.

a = Image.open('../Figures/objects.png').convert('L')

# a is converted to an ndarray.

a = numpy.asarray(a)

# Threshold value is determined by

# using Otsu's method.

thresh = threshold_otsu(a)

# The pixels with intensity greater than

# "theshold" are kept.
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b = a > thresh

# Labelling is performed on b.

c = label(b)

# c is saved as label_output.png

cv2.imwrite('../Figures/label_output.png', c)

# On the labelled image c, regionprops is performed

d = regionprops(c)

# the following command creates an empty plot of

# dimension 6 inch by 6 inch

fig, ax = plt.subplots(ncols=1,nrows=1,

figsize=(6, 6))

# plots the label image on the

# previous plot using colormap

ax.imshow(c, cmap='YlOrRd')

for i in d:

# Printing the x and y values of the

# centroid where centroid[1] is the x value

# and centroid[0] is the y value.

print(i.centroid[1], i.centroid[0])

# Plot a red circle at the centroid, ro stands

# for red.

plt.plot(i.centroid[1],i.centroid[0],'ro')

# In the bounding box, (lr,lc) are the

# co-ordinates of the lower left corner and

# (ur,uc) are the co-ordinates

# of the top right corner.

lr, lc, ur, uc = i.bbox

# The width and the height of the bounding box

# is computed.

rec_width = uc - lc

rec_height = ur - lr
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# Rectangular boxes with

# origin at (lr,lc) are drawn.

rect = mpatches.Rectangle((lc, lr),rec_width,

rec_height,fill=False,edgecolor='black',

linewidth=2)

# This adds the rectangular boxes to the plot.

ax.add_patch(rect)

# Saving the figure

plt.savefig('../Figures/regionprops_output.png')

plt.show()

Figure 10.1(a) is the input image for the regionprops and Figure

10.1(b) is the output image. The output image is labeled with different

colors and enclosed in a bounding box obtained using regionprops.

(a) Input image for region-
props.

(b) Labeled output image with
bounding boxes and centorids.

FIGURE 10.1: An example of regionprops.

10.3 Hough Transform

The edge-detection process discussed in Chapter 4, “Spatial Fil-

ters,” detects edges in an image but does not characterize the slope

and intercept of the line or the radius of a circle. These characteristics

can be calculated using the Hough transform.
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10.3.1 Hough Line

The general form of a line is given by y = mx + b, where m is the

slope of the line and b is the y-intercept. But in the case of a vertical line,

m is undefined or infinity and hence the accumulator plane (discussed

below) will have infinite length, which cannot be programmed in a

computer. Hence, we use polar coordinates which are finite for all slopes

and intercepts to characterize a line.

The polar form of a line (also called the normal form) is given by

the following equation:

x cos(θ) + y sin(θ) = r (10.1)

where r is positive and is the perpendicular distance between the origin

and the line and θ is the slope of the line and it ranges from [0, 180].

Each point in the (x, y) plane, also known as the Cartesian plane, can

be transformed into the (r, θ) plane, also known as the accumulator

plane, which is a 2D matrix with two coordinates r and θ.

A segmented image is given as an input for the Hough line trans-

form. To characterize the line, a 2D accumulator plane with r and θ

is generated. For a specific (r, θ) and for each x value in the image,

the corresponding y value is computed using Equation 10.1. For every

y value that is the foreground pixel i.e., the y value lies on the line,

a value of 1 is added to the specific (r, θ) in the accumulator plane.

This process is repeated for all values of (r, θ). The resultant accumu-

lator plane will have high intensity at the points corresponding to a

line. Then the (r, θ) corresponding to the local peak will provide the

parameters of the line in the original image.

If the input image is of size N-by-N, the number of values of r is M

and number of points in θ is K, the computational time for accumulator

array is O(KMN2). Hence, the Hough line transform is a computation-

ally intensive process. If θ ranges from [0, 180] and for a step size of 1,

then K = 180 along the θ axis. If the range of θ is known a priori and

is smaller than [0, 180], K will be smaller and hence the computation
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can be made faster. Similarly, if other factors such as M or N can be

reduced, the computational time can be reduced as well.

The cv2 function for the Hough line transform is given below:

cv2.HoughLines(image,rho,theta,threshold)

Necessary argument:

image should be binary.

rho is the resolution of the distance in pixels

in the accumulator matrix.

theta is the resolution of the angle in pixels.

threshold is the minimum value that will be used

to detect a line in the accumulator matrix.

Returns: Outputs is a vector with distance and

angle of detected lines.

The cv2 code for the Hough line transform is given below. The input

image (Figure 10.2(a)) is converted to grayscale. The image is then

thresholded using Otsu’s method (Figure 10.2(b)) to obtain a binary

image. On the thresholded image, Hough line transformation is per-

formed. The output of the Hough line transform with the detected lines

is shown in Figure 10.2(c). The thick lines are lines that are detected

by the Hough line transform.

import cv2

import numpy as np
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# Opening the image.

im = cv2.imread('../Figures/hlines.png')

# Converting the image to grayscale.

a1 = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

# Thresholding the image to obtain

# only foreground pixels.

thresh, b1 = cv2.threshold(a1, 0, 255,

cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

cv2.imwrite('../Figures/hlines_thresh.png', b1)

# Performing the Hough lines transform.

lines = cv2.HoughLines(b1, 10, np.pi/20, 200)

for rho, theta in lines[0]:

a = np.cos(theta)

b = np.sin(theta)

x0 = a*rho

y0 = b*rho

x1 = int(x0 + 1000*(-b))

y1 = int(y0 + 1000*(a))

x2 = int(x0 - 1000*(-b))

y2 = int(y0 - 1000*(a))

cv2.line(im,(x1,y1),(x2,y2),(0,0,255),2)

cv2.imwrite('../Figures/houghlines_output.png', im)

# Printing the lines: distance and angle in radians.

print(lines)

10.3.2 Hough Circle

The general form of a circle is given by (x − a)2 + (y − b)2 = R2

where (a, b) is the center of the circle and R is the radius of the circle.
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(a) Input image. (b) Thresholded image.

(c) Detected lines.

FIGURE 10.2: An example of the Hough line transform.

The equation can be rewritten as y = b±
√
R2 − (x− a)2. Alternately,

it can be written in polar form asx = a+R cos(θ)

y = b+R sin(θ)
(10.2)

where θ ranges from [0, 360].

It can be seen from Equation 10.2 that each point in the (x, y) plane

can be transformed into an (a, b, R) hyper-plane or accumulator plane.

To characterize the circle, a 3D accumulator plane with R, a and

b is generated. For a specific (R, a, b) and for each θ value, the corre-

sponding x and y value are computed using Equation 10.2. For every

x and y value that is a foreground pixel i.e., the (x, y) value lies on the

circle, a value of 1 is added to the specific (R, a, b) coordinate in the

accumulator plane. This process is repeated for all values of (R, a, b).
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The resultant accumulator hyper-plane will have high intensity at the

points corresponding to a circle. Then the (R, a, b) corresponding to

the local peak will provide the parameters of the circle in the original

image.

The following is the Python function for the Hough circle transform:

cv2.HoughCircles(input, cv2.HOUGH_GRADIENT, dp,

min_dist, param1, param2, minRadius, maxRadius);

Necessary argument:

input is a grayscale image as an ndarray.

cv2.HOUGH_GRADIENT is the method that is used by OpenCV.

dp is the inverse ratio of resolution. If dp is an

integer n,

then the accumulator width and height will be 1/n

of the input image.

min_dist is the minimum distance that the function

will maintain between the detected centers.

param1 is the upper threshold for Canny edge detector

that is used by the Hough function internally.

param2 is the threshold for center detection.

Optional arguments:

min_radius is the minimum radius of the circle

that needs to be detected while max_radius is

the maximum radius to be detected.
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Returns:

output is an ndarray that contains information about

the (x, y) values of the center and radius of

each detected circle.

The cv2 code for the Hough circle transform is given below.

import numpy as np

import scipy.ndimage

from PIL import Image

import cv2

# opening the image and converting it to grayscale

a = Image.open('../Figures/withcontrast1.png')

a = a.convert('L')

# Median filter is performed on the

# image to remove noise.

img = scipy.ndimage.filters.median_filter(a,size=5)

# Circles are determined using

# Hough circles transform.

circles = cv2.HoughCircles(img,

cv2.HOUGH_GRADIENT,1,10,param1=100,

param2=30,minRadius=10,maxRadius=30)

# circles image is rounded to unsigned integer 16.

circles = np.uint16(np.around(circles))

# For each detected circle.

for i in circles[0,:]:

# An outer circle is drawn for visualization.

cv2.circle(img,(i[0],i[1]),i[2],(0,255,0),2)

# its center is marked

cv2.circle(img,(i[0],i[1]),2,(0,0,255),3)

# Saving the image as houghcircles_output.png

cv2.imwrite('../Figures/houghcircles_output.png', img)
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Figure 10.3(a) is a CT image with two bright white circular regions,

which are contrast-filled blood vessels. The aim of this exercise is

to characterize the vessel size using the Hough circle transform. The

image is median filtered (Figure 10.3(b)) to remove noise. The size of

the median filter kernel is 5-by-5. The search space is narrowed by

specifying a minimum radius of 10 and a maximum radius of 30. The

cv2.HoughCircles returns an ndarray with the inner array containing

the center x, center y and radius respectively. The output of the Hough

circle transform is shown in Figure 10.3(c). In the for-loop, the detected

circles are marked using dark circles. The centers of these circles are

also marked.

If the input image is of size N-by-N, the number of possible values

of a and b are M and the number of possible values of R is K; the

computational time is O(KM2N2). Hence, the Hough circle transform

is significantly computationally intensive compared to the Hough line

transform. If the range of radii to be tested is smaller, then K is smaller

and hence the computation can be made faster. If the approximate loca-

tion of the circle is known, then the range of a and b is reduced and

consequently decreases M and hence computation can be accomplished

faster. Interested readers can refer to [IK88],[IK87],[LLM86],[Sha96]

and [XO93] to learn more about Hough transforms.

10.4 Template Matching

The template matching technique is used to find objects in an image

that match the given template. For example, template matching is used

to identify a particular person in a crowd or a particular car in traffic.

It works by comparing a sub-image of the person or object over a much

larger image.

Template matching can be either intensity-based or feature-based.

We will demonstrate intensity-based template matching. A mathe-
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(a) Input Image. (b) Image after applying
median filter.

(c) Output with min radius =
10 and max radius 30.

FIGURE 10.3: An example of the Hough circle transform.

matical coefficient, called cross-correlation, is used for intensity-based

template matching. Let I(x, y) be the pixel intensity of image I at

(x, y) then the cross-correlation, c between I(x, y) and template t(u, v)

is given by

c(u, v) =
∑
x,y

I(x, y)t(x− u, y − v) (10.3)
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Cross-correlation is similar to the convolution operation. Since c(u, v)

is not independent of the changes in image intensities, we use the nor-

malized cross-correlation coefficient proposed by J.P. Lewis [Lew95].

The normalized cross-correlation coefficient is given by the following

equation:

r(u, v) =

∑
x,y

(I(x, y)− Ī)(t(x− u, y − v)− t̄)√∑
x,y

(I(x, y)− Ī)2
∑
x,y

(t(x− u, y − v)− t̄)2
(10.4)

where Ī is the mean of the sub-image that is considered for template

matching and t̄ is the average of the template image. In the places

where the template matches the image, the normalized cross-correlated

coefficient is close to 1.

The following is the Python code for template matching.

import cv2

import numpy

from PIL import Image

from skimage.morphology import label

from skimage.measure import regionprops

from skimage.feature import match_template

# Opening the image and converting it to grayscale.

image = Image.open('../Figures/airline_seating.png')

image = image.convert('L')

# Converting the input image into an ndarray.

image = numpy.asarray(image)

# Reading the template image.

temp = Image.open('../Figures/template1.png')

temp = temp.convert('L')

# Converting the template into an ndarray.
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temp = numpy.asarray(temp)

# Performing template matching.

result = match_template(image, temp)

thresh = 0.7

# Thresholding the result from template

# matching considering pixel values where the

# normalized cross-correlation is greater than 0.7.

res = result > thresh

# Labeling the thresholded image.

c = label(res, background=0)

# Performing regionprops to count the

# number of label.

reprop = regionprops(c)

print("The number of seats are:", len(reprop))

# Converting the binary image to an 8-bit for storing.

res = res*255

# Converting the ndarray to image.

cv2.imwrite("../Figures/templatematching_output.png", res)

The results of template matching are shown in Figure 10.4. Figure

10.4(a) is the input image containing the layout of airline seats and

Figure 10.4(b) is the template image. The normalized cross-correlation

coefficient, r, is computed for every pixel in the input image. Then the

array comprising the normalized cross-correlated coefficients is thresh-

olded. The threshold value of 0.7 is chosen. Then the regions in the

thresholded array are labeled. Regionprops is performed on the labeled

array to obtain the number of regions that match the template and

have r > 0.7. The output image in Figure 10.4(c) is the thresholded

image. In this particular example, the number of seats returned by the

program is 263.
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(a) Input image

(b) Template

(c) Cross-correlated image after segmentation

FIGURE 10.4: An example of template matching.

10.5 Corner Detector

A corner detector, as the name indicates, detects corners. It is typi-

cally a step for further image processing. For example, in medical imag-

ing, the corner points could be used as an input for image registration, a

process of transforming images from one coordinate system to another.

Interested readers can refer to [Bir11] for more details on image regis-

tration.

We will discuss two corner detectors, namely, the FAST and Harris

corner.
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10.5.1 FAST Corner Detector

As the name indicates FAST corner detector ([RD06]) is computa-

tionally efficient. It works on the following principle.

1. Consider a pixel (p) in the image for corner detection and let its

pixel value be vp. We will use its neighboring 16 pixels in a circle

for corner detection.

2. If a set of N pixels among the 16 pixels are either brighter or

darker than the pixel p by a pre-determined threshold, the point

is considered to be a corner.

3. Repeat this for all the pixels.

The computational complexity of this method is similar to convo-

lution and hence relatively fast compared to other corner detectors.

In the code below, the image is opened and converted to a numpy

array. The image is used to determine the response image using the

corner fast function. The corner peaks function then finds the corner.

Finally, a statistical test using corner subpix is performed to ensure all

the detected corners are corners. The detected corners are superimposed

on the image for visualization.

import numpy as np

from PIL import Image

from skimage.feature import corner_peaks

from skimage.feature import corner_subpix, corner_fast

from matplotlib import pyplot as plt

# Image is opened and is converted to grayscale.

img = Image.open('../Figures/corner_detector.png').

convert('L')

# img is converted to an ndarray.

img1 = np.asarray(img)
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corner_response = corner_fast(img1)

cpv = corner_peaks(corner_response, min_distance=50)

corners_subpix_val = corner_subpix(img1, cpv,

window_size=13)

fig, ax = plt.subplots()

ax.imshow(img1, interpolation='nearest', cmap=plt.cm.gray)

x = corners_subpix_val[:, 1]

y = corners_subpix_val[:, 0]

ax.plot(x, y, 'ob', markersize=10)

ax.axis('off')

plt.savefig('../Figures/corner_fast_detector_output.png',

dpi=300)

plt.show()

Figure 10.5(a) is a segmented image of an electron microscopy sam-

ple. In the output image in Figure 10.5(b), the detected corners are

highlighted using a star. As evidenced in the output, the FAST corner

detector found spurious points while the Harris corner detector, which

will be discussed next, produces fewer spurious points. In spite of this

shortcoming, the FAST corner detector is useful in situations where

speed is of essence. For example, for real-time corner detection, the

FAST corner detector outperforms the Harris detector.

10.5.2 Harris Corner Detector

The Harris corner detector ([HS88]) works based on the following

principle:

• The derivative of an image with no corners or edges along the x

and y axes will be uniformly distributed.

• The derivative of an image with no corners but vertical edges will

have a strong directional preference along the vertical direction.
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(a) Input image for the FAST
corner detector.

(b) Output of the FAST corner
detector.

FIGURE 10.5: An example of the FAST corner detector.

• The derivative of an image with no corners but horizontal edges

will have a strong directional preference along the horizontal

direction.

• The derivative of an image with corners will have a strong direc-

tional preference along both the vertical and horizontal directions.

We will begin the discusions by finding a difference image which is

formed by finding the sum of the squared difference between a given

pixel and its neighbors.

D(u, v) =
∑

(I(x+ u, y + v)− I(x, y))2 (10.5)

For images with relatively similar pixel values nearby, the value of

D(u, v) will be zero. If there are significant changse in pixel values in the

neighborhood of the pixel at position (x, y), then the value of D(u, v)

will be large. The aim in the Harris corner detector is to maximize the

value of D.

We will simplify Equation 10.5 using Taylor series expansion and

assuming the second and other higher partial derivatives can be ignored.

I(x+ u, y + v) = I(x, y) + uIx(x, y) + vIy(x, y) (10.6)

where Ix and Iy are partial derivative of I along x and y axes.



246 Image Processing and Acquisition using Python

By substituting 10.6 in 10.5, we obtain

D(u, v) =
∑

u2I2
x + 2uvIxIy + v2I2

y (10.7)

which can be rewritten in matrix form as

D(u, v) =
∑(

u v
)( I2

x IxIy

IxIy I2
y

)(
u

v

)
(10.8)

which can be simplified to

D(u, v) =
(
u v

)(∑(
I2
x IxIy

IxIy I2
y

))(
u

v

)
(10.9)

which can be rewritten as

D(u, v) =
(
u v

)
M

(
u

v

)
(10.10)

The Harris corner response (R) is then calculated as

R = det(M)− k(trace(M))2 (10.11)

where det is the determinant of M and trace is the sum of all elements

along the diagonal of M (i.e., trace of M) and k is a constant whose

value range is from 0.04-0.06. R is a large value for corners while it is

a small value for flat regions.

During the computation of gradients Ix and Iy, it is recommended

to smooth the image using a Gaussian filter to reduce noise.

In the code below, the image is read and converted to a numpy

array. The image is used to determine the response image using the

corner harris function. The corner peaks image then finds the corner.

Finally, a statistical test using corner subpix is performed to ensure all

the detected corners are corners.
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import numpy as np

from PIL import Image

from matplotlib import pyplot as plt

from skimage.feature import corner_harris

from skimage.feature import corner_peaks, corner_subpix

# Opening image and converting it into grayscale.

img = Image.open('../Figures/corner_detector.png').

convert('L')

# img is converted to an ndarray.

img1 = np.asarray(img)

# Detecting corners using Harris.

corner_response = corner_harris(img1, k=0.2)

# Detecting peak values.

corners_peak_val = corner_peaks(corner_response, 50)

corners_subpix_val = corner_subpix(img1, corners_peak_val,

13)

# Defining a subplot.

fig, ax = plt.subplots()

# Displaying the image.

ax.imshow(img1, interpolation='nearest', cmap=plt.cm.gray)

x = corners_subpix_val[:, 1]

y = corners_subpix_val[:, 0]

ax.plot(x, y, 'ob', markersize=10)

ax.axis('off')

# Saving the image.

plt.savefig('../Figures/corner_harris_detector_output.png',

dpi=300)

plt.show()
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Figure 10.6(a) is a segmented image of an electron microscopy sam-

ple. In the output image in Figure 10.6(b), the detected corners are

highlighted using a star. As evidenced in the output, the Harris corner

detector found fewer spurious points.

(a) Input image for the Harris
corner detector.

(b) Output of the Harris cor-
ner detector.

FIGURE 10.6: An example of Harris corner detector.

10.6 Summary

• Labeling is used to identify different objects in an image.

• The regionprops function has several attributes and is used to

study different properties of objects in a labeled image.

• The Hough line transform detects lines while the Hough circle

transform detects circles. They also determine the corresponding

parameters: slope and intercept for lines, and center and diameter

for circles.

• Template matching is used to identify or count similar objects in

an image.
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• A corner detector is used to find corners in an image. It is typically

used as a pre-processing step for further image processing. The

FAST corner detector is computationally faster than the Harris

corner detector but finds more spurious corners.

10.7 Exercises

1. The Hough transform is one method for finding the diameter of

a circle. The process of finding the diameter is slow. Suggest a

method for determining the approximate diameter of a circle,

given only pixels corresponding to the two blood vessels in Figure

10.3(a).

2. Figure 4.9(a) in Chapter 4 consists of multiple characters. Write

a Python program to break up this text and store the individual

characters as separate images. Hint: Use the regionprops function.

3. Consider an image with 100 coins of various sizes spread on a

uniform background. Assume that the coins do not touch each

other, write a pseudo code to determine the number of coins for

each size. Brave soul: Write a Python program to accomplish this.

Hint: regionprops will be needed.

4. Consider an image with 100 coins of various sizes spread on a uni-

form background. Assume that the coins do touch each other,

and write a pseudo code to plot a histogram of the area of the

coin (along the x-axis) vs. the number of coins for a given area

(along the y-axis). Write a Python program to accomplish this.

If only a few coins overlap, determine the approximate number of

coins.
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Chapter 11

Neural Network

11.1 Introduction

Neural networks has taken the world by storm in the last decade.

However, the work has been ongoing since the 1940s. Some of the initial

work was in modeling the behavior of a biological neuron mathemati-

cally. Frank Rosenblat in 1958 built a machine that showed an ability

to learn based on the mathematical notion of a neuron. The process of

building neural networks were further refined over the next 4 decades.

One of the most important papers that allowed training arbitrarily

complex networks appeared in 1986 in a work by David E. Rumel-

hart, Geoffrey Hinton, and Ronald J. Williams [RHW86]. This paper

re-introduced the back-propagation algorithm that is the workhorse of

the neural network as used today. In the last 2 decades, due to the

availability of cheaper storage and compute, large networks have been

built that solve significant practical problems. This has made the neu-

ral network and its cousins such as the convolution neural network,

recurrent neural network, etc., household names.

In this chapter, we will begin the discussion with the mathematics

behind neural networks, which includes forward and back-propagation.

We will then discuss the visualization of a neural network. Finally, we

will discuss building a neural network using Keras, a Python module

for machine learning and deep learning.

Interested readers are recommended to follow the discussions in the

following sources: [Dom15], [MTH], [GBC16], [Gro17].

251
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11.2 Introduction

A neural network is a non-linear function with many parameters.

The simplest curve is a line with two parameters: slope and intercept.

A neural network has many more parameters, typically in the order

of 10,000 or more and sometimes millions. These parameters can be

determined by the process of optimizing a loss function that defines

the goodness of fit.

11.3 Mathematical Modeling

We will begin the discussion of the mathematics of a neural network

by fitting lines and planes. We can then extend it to any arbitrary curve.

11.3.1 Forward Propagation

The equation of a line is defined as

y1 = Wx+ b (11.1)

where x is the independent variable, y1 is the dependent variable, W

is the slope of the line and b is the intercept. In the world of machine

learning, W is called the weight and b is the bias.

If the independent variable x is a scalar, then Equation 11.1 is a

line, W is scalar and b is a scalar. However, if x is a vector, then

Equation 11.1 is a plane, W is a matrix and b is a vector. If x is very

large, Equation 11.1 is called a hyper-plane. Equation 11.1 is a linear

equation and the best model that can ever be created using it would

be a linear model as well.

In order to create non-linear models in a neural network, we add a

non-linearity to this linear model. We will discuss one such non-linearity
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called sigmoid. In practice however, other non-linearities such as tanh,

rectified linear unit (RELU), and leaky RELU are also used.

The equation of a sigmoid function is

y =
1

1 + e−x
(11.2)

When x is a large number, the value of y asymptotically reaches 1

(11.1), while for small values of x, the value of y asymptotically reaches

0. In the region along the x-axis between −1 and +1 approximately,

the curve is linear and is non-linear everywhere else.

FIGURE 11.1: Sigmoid function.

If the y1 from 11.1 is passed through a sigmoid function, we will

obtain a new y1,

y1 =
1

1 + e−W1x−b1 (11.3)
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where W1 is the weight of the first layer and b1 is the bias of the first

layer. The new y1 in Equation 11.3 is a non-linear curve. The equation

can be rewritten as,

y1 = σ(W1x+ b1) (11.4)

In a simple neural network here, we will add another layer (i.e.,

another set of W and b) to which we will pass the y1 obtained from

Equation 11.4.

y = W2y1 + b2 (11.5)

where W2 is the weight of the second layer and b2 is the bias of the

second layer.

If we substitute 11.4 in 11.5, we obtain,

y = W2σ(W1x+ b1) + b2 (11.6)

We can repeat this process by adding more layers and create a com-

plex non-linear curve. However, for clarity sake, we will limit ourselves

to 2 layers.

In Equation 11.6, there are 4 parameters namely, W1, b1, W2, and

b2. If x is a vector, then W1 and W2 are matrices and b1 and b2 are

vectors. The aim of a neural network is to determine the value inside

these matrices and vectors.

11.3.2 Back-Propagation

The value of the 4 parameters can be determined using the process

of back-propagation. In this process, we begin by assuming an initial

value for the parameters. They can be assigned a value of 0 or some

random value could be used.

We will then determine the initial value of y using Equation 11.6.

We will denote this value as ŷ. The actual value y and the predicted
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value ŷ will not be equal. Hence there will be an error between them.

We will call this error “loss.”

L = (ŷ − y)2 (11.7)

Our aim is to minimize this loss by finding the correct value for the

parameters of Equation 11.6.

Using the current value of the parameter, its new value iteratively

can be calculated using,

Wnew = Wold − ε
∂L

∂W
(11.8)

where W is a parameter and L is the loss function. This equation is

generally called an ‘update equation’.

To simplify the calculation of partial derivatives such as ∂L
∂W , we

will derive them in parts and assemble them using chain rule.

We will begin by calculating ∂L
∂ŷ using Equation 11.7

∂L

∂ŷ
= 2 ∗ (ŷ − y) (11.9)

Then we will calculate ∂L
∂W2

using the chain rule,

∂L

∂W2
=
∂L

∂ŷ
∗ ∂ŷ

∂W2
(11.10)

If we substitute ŷ from Equation 11.5 and ∂L
∂ŷ from Equation 11.9,

we obtain,

∂L

∂W2
= 2 ∗ (ŷ − y) ∗ y1 (11.11)

The partial derivative can then be used to update the value of W2

using the existing value of W2 with the help of the update equation. A

similar calculation (left as an exercise to the reader) can be shown for

b2 as well.
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Next we will calculate the new value of W1,

∂L

∂W1
=
∂L

∂ŷ

∂ŷ

∂y1

∂y1

∂W1
(11.12)

which can be computed using Equations 11.9, 11.5 and 11.4 respec-

tively. Thus,

∂L

∂W1
= 2(ŷ − y)(W2)(σ(W1x+ b1)(1− σ(W1x+ b1))x) (11.13)

which can be simplified to

∂L

∂W1
= 2xW2(ŷ − y)σ(W1x+ b1)(1− σ(W1x+ b1)) (11.14)

The new value of W1 can be calculated using the update Equation

11.8. A similar calculation (left as an exercise to the reader) can be

shown for b1 as well.

For every input data point or a batch of data points, we perform

forward propagation, determine the loss, and then back-propagate to

update the parameters (weights and biases) using the update equation.

This process is repeated with all the available data.

In summary, the process of back-propagation finds the partial

derivatives of the parameters of a neural network system and uses the

update equation to find a better value for the parameters by minimizing

the loss.

11.4 Graphical Representation

Typically, a neural network is represented as shown in Figure 11.2.

The left layer is called the input layer, the middle is called the hidden

layer, and the right is called the output layer.
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A node (filled circle) in a given layer is connected to all the nodes in

the next layer but is not connected to any nodes in that layer. In Figure

11.2, arrows are only drawn to originate from an input layer to the first

node in the hidden layer. For clarity sake, the lines ending on other

nodes are omitted. The values at each of the input nodes is multiplied

with the weights in the line between the nodes. The weighted inputs

are then added in the node in the hidden layer and passed through the

sigmoid function or any other non-linearity. The output of the sigmoid

function is then weighted in the next layer and the sum of all those

weights will be the output of the output layer (ŷ).

FIGURE 11.2: Graphical representation of a neural network.

If there are n nodes in the input layer and m nodes in the hidden

layer, then the number of edges connecting from the input to hidden-

layer will be n*m. This can be represented as a matrix of size [n, m].

Then the operation described in the previous paragraph will be a dot

product between the input x and the matrix followed by application of

the sigmoid function described in Equation 11.4. This matrix is the W1

we have previously described.
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If there are m nodes in the hidden layer and k nodes in the output

layer, then the number of edges connecting from hidden to output will

be m*k. This can be represented as a matrix of size [m, k] and is the

matrix W2 we have previously described.

FIGURE 11.3: Graphical representation of a neural network as weight
matrices.

During the forward propagation, a value of x is used as an input

to begin the compute that is propagated from the input side to the

output. The loss is calculated by comparing the predicted value and

the actual. The gradients are then computed in reverse from the output

layer toward the input and the parameters (weights and biases) are

updated by back-propagation.

In this discussion, we assumed that y is a continuous function and

its value is a real number. This class of problem is called a regression

problem. An example of such a problem is the prediction of price of an

item based on images.
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11.5 Neural Network for Classification Problems

The other class of problem is the classification problem where the

dependent variable y takes discrete values. An example of such a prob-

lem is identifying a specific type of lung cancer given an image. There

are two major types: small cell lung cancer (SCLC) and non-small cell

lung cancer (NSCLC).

In a classification problem, we aim to draw a boundary between two

classes of points as shown in Figure 11.4. The two classes of points in

the image are the circles and the plusses. A linear boundary (such as a

line or plane) that has the lowest error cannot be drawn between these

two sets of points. A neural network can be used to draw a non-linear

boundary.

One of the common loss functions for the classification problem is

the cross entropy loss. It is defined as

L = −
∑

ylogŷ (11.15)

where y is the actual value and ŷ is the predicted value.

Since the loss function is different compared to the regression prob-

lem, the derivatives such as ∂L
∂W would yield a different equation com-

pared to the one derived for the regression problem. However the

approach remains the same.

11.6 Neural Network Example Code

The current crop of popular deep learning packages such as Tensor-

flow [ABC+16], Keras [C+20], etc., require the programmer to define

the forward propagation while the back-propagation is handled by the

package.
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FIGURE 11.4: The neural network for the classification problem draws
a non-linear boundary between two classes of points.

In the example below, we define a neural network to solve the prob-

lem of identifying handwritten digits from MNIST dataset [LCB10],

a popular image dataset for benchmarking machine learning and deep

learning applications. Figure 11.5 shows a few representative images

from the MNIST dataset. Each image is 28 pixels by 28 pixels in size.

The total number of pixels = 28*28 = 784. The images contain a single

hand-drawn digit. As can be seen in the image, two numbers may not

look the same in two different images. The task is to identify the digit

in the image, given the image itself. The image is the input and the

output is one of the 10 classes (number between 0 and 9).

We begin by importing all the necessary modules in Keras, specif-

ically the Sequential model and Dense layer. The Sequential model

allows defining a set of layers. In the mathematical discussion, we

defined 2 layers. In Keras, these layers can be defined using the Dense

layers class. A stack of these layers constitutes a Sequential layer.

We load the MNIST dataset using the convenient functionality

(keras.datasets.mnist.load data) available in Keras. This loads both the
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FIGURE 11.5: Some sample data from the MNIST dataset [LCB10].

training data as well as testing data. The number of images in the train-

ing dataset is 60,000 and the number of images in the testing dataset is

10,000. Each image is stored as a 784-pixel-long vector with 8-bit preci-

sion (i.e., pixel values are between 0 and 255). The corresponding y for

each image is a single number corresponding to the digit in that image.

We then normalize the image by dividing each pixel value by 255

and subtracting 0.5. Hence the normalized image will have pixel values

between −0.5 and +0.5.

The model is built by passing 3 Dense layers to the Sequential class.

The first layer has 64 nodes, the second layer has 64 nodes. The first

2 layers use the Rectified Linear Unit (RELU) activation function for

non-linearity. The last layer produces a vector of length 10. This vector

is passed through a softmax function (Equation 11.16). The output of

a softmax function is a probability distribution as each of the values

corresponds to the probability of a given digit and also the sum of

all the values in the vector equates to 1. Once we obtain this vector,

determining the corresponding digit can be accomplished by finding the

position in the vector with the highest probability value.

si =
exi∑
i
exi

(11.16)
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We will pass the model through an optimization process by calling

the fit function. We run the model through 5 epochs, where each epoch

is defined as visiting all images in the training dataset. Typically we

feed a batch of images for training instead of one image at a time. In

the example, we use a batch of 32, which implies in each training a

random batch of 32 images and the corresponding labels are passed.

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import to_categorical

from keras.datasets import mnist

# Fetch the train and test data.

(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Normalize the image so that all pixel values

# are between -0.5 and +0.5.

x_train = (x_train / 255) - 0.5

x_test = (x_test / 255) - 0.5

# Reshape the train and test images to size 784 long vector.

x_train = x_train.reshape((-1, 784))

x_test = x_test.reshape((-1, 784))

# Define the neural network model with 2 hidden layer

# of size 64 nodes each.

model = Sequential([

Dense(64, activation='relu', input_shape=(784,)),

Dense(64, activation='relu'),

Dense(10, activation='softmax'),

])
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# Compile the model using Adam optimizer and use

# the cross entropy loss.

model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=['accuracy'])

# Train the model.

model.fit(x_train, to_categorical(y_train), epochs=5,

batch_size=32)

The output contains the result of training 5 epochs. As can be seen

the value of cross entropy loss decreases as the training progresses. It

started at 0.3501 and finally ended at 0.0975. Similarly, the accuracy

increased as the training progressed from 0.8946 to 0.9697.

Epoch 1/5

60000/60000 [===] - 3s 58us/step - loss: 0.3501 - accuracy:

0.8946

Epoch 2/5

60000/60000 [===] - 3s 56us/step - loss: 0.1790 - accuracy:

0.9457

Epoch 3/5

60000/60000 [===] - 3s 55us/step - loss: 0.1357 - accuracy:

0.9576

Epoch 4/5

60000/60000 [===] - 3s 55us/step - loss: 0.1129 - accuracy:

0.9649

Epoch 5/5

60000/60000 [===] - 3s 57us/step - loss: 0.0975 - accuracy:

0.9697

Interested readers must consult the Keras documentation for more

details.
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11.7 Summary

• Neural networks are universal function approximators. In training

a neural network, we fit a non-linear curve using available data.

• To obtain non-linearity in a neural network, we combine a linear

function with non-linear functions such as sigmoid, RELU, etc.

• The parameters of the non-linear curve are learnt through the

process of back-propagation.

• Neural networks can be used for both regression and classification

problems.

11.8 Exercises

1. You are given a neuron that performs addition of y =

x1*w1+x2*w2, where x1 and x2 are the inputs and w1 and w2 are

weights. Write the back-propagation equation for it. Also write

the update equation for w1 and w2.

2. In a neural network, we combine linear function Wx + b with a

non-linear function. We stack these layers together to produce an

arbitrarily complex non-linear function. What would happen if

we do not use a non-linear function but still stack layers? What

kind of curve can we build?

3. Why is sigmoid no longer popular as an activation function? Con-

duct research on this topic.
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Convolutional Neural Network

12.1 Introduction

The convolution neural network (CNN) is a biologically inspired

mathematical model of vision. The journey began successfully with the

work by David Hubel and Torsten Wiesel who won the 1981 Nobel prize

in Physiology or Medicine for this work. The work by Hubel and Weisel

was best summarized by the Nobel committee’s press release ([ppr20])

from 1981. The following paragraph is a reproduction from the press

release:

“... the visual cortex’s analysis of the coded message from the retina

proceeds as if certain cells read the simple letters in the message and

compile them into syllables that are subsequently read by other cells,

which, in turn, compile the syllables into words, and these are finally

read by other cells that compile words into sentences that are sent to

the higher centers in the brain, where the visual impression originates

and the memory of the image is stored.”

As the quote indicates, Hubel and Wiesel found that the brain has a

series of neurons. The neurons nearest to the retina detect simple shapes

such as lines in different orientation. The neurons next to detect com-

plex shapes like curves. The neurons downstream detect more complex

shapes like nose, ear, etc.

The understanding of the brain’s visual cortex paved the way for

mathematical modeling of the visual pathway. The first successful

work was done by Kunihiko Fukushima ([Fuk80]). He demonstrated a

265
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hierarchical model using convolution and downsampling. The convolu-

tion allowed viewing of only a part of the image or video while process-

ing. The downsampling was performed by averaging. Many years later, a

different method called “maxpooling” was introduced which is still in use

today and will be discussed later in this chapter. The next major break-

through was the work of Yann Lecun [LBD+89] who introduced a back-

propagation approach to learn the parameters of a CNN.

With the availability of large quantities of data, cheaper storage,

compute power and software, CNNs have become a go-to tool for solving

image processing and computer vision problems in all areas of science

and engineering.

12.2 Convolution

We discussed the process of applying convolution to an image in

Chapter 4. In this section, we will discuss convolution from the per-

spective of a CNN. In the example in Chapter 4, the convolution was

performed using a 5-by-5 filter where each element in the filter has a

value of 1
25 . In a CNN, the values in the filter are determined by the

learning process (i.e., the back-propagation process).

Also, unlike the examples from Chapter 4, in a CNN there are mul-

tiple filters used. These filters are arranged into layers. The first layer

is designed to detect simple objects such as lines. Since there are many

possible configurations (slopes) for lines, the first layer may have mul-

tiple filters to detect lines at all these orientations. The second layer

is designed to detect curves. Since there are more configurations for

a curve compared to a line, the number of filters in the second layer

is typically more than the number of filters in the first layer. Modern

CNNs1 typically have more than 2 layers.

1CNNs are only 40 years old. We are distinguishing CNN architectures from the
last 10 years from the ones by using the word modern.
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12.3 Maxpooling

Maxpooling is a dimensionality reduction technique. It takes an

input such as an image and reduces its size using the maximum among

its neighbors. The effect of replacing a pixel value with its neighborhood

maximum produces an abstracted representation of the image. We will

demonstrate with an example.

Let’s consider a small image (Figure 12.1(a)) of size 4x4 and also

consider a maxpooling filter of size 2x2 placed on the top left corner of

the image. In the maxpooling process, we will find the maximum value

of the 2x2 region containing the values 10, 6, 8 and 2. We will create a

new image (Figure 12.1(b)) where we will use the maximum value (10)

from the previous calculation. We will then move this maxpooling filter

by 2 steps (called a stride) over the image and find the next region on

the image consisting of values 4, 6, 12 and 5. Its maximum value of

12 will be used for the next pixel in the output image. Once a row of

maxpooling operation is completed, we move 2 rows below and continue

this process.

(a) Input image. (b) Maxpooled image.

FIGURE 12.1: An example of applying maxpooling on a sub-image.
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If an image is of size NxN and we move with a stride of 2x2, then

the output image will be of size N
2 xN2 . A higher stride can be used to

reduce the image further.

The output from the convolution and maxpooling layer is finally

passed to a classifier or a regressor, which is typically built using a

neural network as discussed in the previous chapter. This is due to the

fact that the convolution and maxpooling layer are data conditioners

that prepare the data for a final classifier or a regressor.

12.4 LeNet Architecture

We will use the convolution layer and maxpooling to build LeNet

[LBBH98], one of the first CNNs to revolutionize the field of computer

vision. An input image (Figure 12.2) is passed to a series of 6 convo-

lutions in the first layer. The output of the first convolution layer is

subsampled using maxpooling, and is then passed to the second convo-

lution layer, which contains 16 filters. The output of the second convo-

lution layer is passed to the second maxpooling layer. The output of this

layer is then flattened to a vector and passed to a neural network-based

classifier or regressor.

Ideally, any classifier such as a Support Vector Machine SVM or

Logistic regression can be used. However, a neural network, as discussed

in the last chapter is preferred.

In the last chapter, we discussed that the parameters of the system

can be learned using the process of back-propagation. The same applies

to parameters (the values in the filter) of a CNN as well.

For every input image or a batch of images, we perform forward

propagation through the convolution, maxpooling, and the neural net-

work layers. We then determine the loss. Then we back-propagate

through the neural network layers followed by back-propagation

through the convolution layers and update the parameters (weights
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and biases) using the update equation. This process is repeated with

all the available data.

FIGURE 12.2: LeNet architecture diagram.

In the example below, we define a LeNet CNN to solve the problem

of identifying handwritten digits from MNIST data set, which we also

used in the last chapter.

We begin by importing all the necessary functionalities in Keras,

specifically the Sequential model, Dense layer, Conv2D layer, and Max-

Pooling2D layer. The Sequential model allows defining a set of layers.

The list of layers in order is shown in Figure 12.3.

The first layer is the input layer that takes a 28x28x1 image. The

second layer is the convolution layer with 32 filters. The third layer

is the maxpooling layer that reduces the image size by 1
2 . The fourth

and fifth layer are the second set of a convolution layer with 64 filters

and a second maxpooling layer that reduces the image size by 1
2 . The

second maxpooling layer output image is flattened and passed through

two neural network layers to produce an output prediction.

In this example, we use images of size 28x28x1. After passing

through the first convolution layer, we will obtain a 3D volume of size

28x28x32. The first maxpooling layer reduces the size by 1
2 to 14x14x32.

This volume is passed through the second convolution layer which pro-

duces a volume of size 14x14x64. The second maxpooling layer reduces

the image to 7x7x64. The flattened vector will thus be of size 3136

which is the product of 7, 7 and 64.

In the code, we load the training and test dataset by using the

‘mnist.load data() method’. The x values (image pixels) are normalized
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FIGURE 12.3: LeNet Keras model.

to be within the range [−0.5, 0.5]. They are then reshaped from its

original shape of 50000x784 to 50000x28x28x1.

A sequential model is created and the various layers are added as

described earlier. In all the layers, RELU non-linearity is added. The

last layer is passed through softmax to obtain probability distribution

which can be evaluated for cross-entropy loss. Finally, we evaluate the

model for accuracy using the test data.

import numpy as np

import keras

from keras.datasets import mnist
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from keras.models import Sequential

from keras.layers import Dense, Flatten

from keras.layers import Conv2D, MaxPooling2D

from keras.utils import to_categorical

# Size of image is 28x28x1 channel.

input_shape = (28, 28, 1)

batch_size = 64

# number of possible outcomes [0-9]

nclasses = 10

epochs = 3

# Fetch the train and test data.

(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Normalize the image so that all pixel values

# are between -0.5 and +0.5.

x_train = (x_train / 255) - 0.5

x_test = (x_test / 255) - 0.5

# Reshape the train and test images to size 28x28x1.

x_train = x_train.reshape((x_train.shape[0], *input_shape))

x_test = x_test.reshape((x_test.shape[0], *input_shape))

# Define the CNN model with 2 convolution layer and

# 2 max pooling layer followed by a neural network

# with 1 hidden layer of size 128 nodes.

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3),

activation='relu',

input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3), activation='relu'))
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model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dense(nclasses, activation='softmax'))

# Compile the model using Adam optimizer and use

# the cross entropy loss.

model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=['accuracy'])

# Train the model.

model.fit(x_train, to_categorical(y_train), epochs=epochs,

batch_size=batch_size)

# Evaluate the model.

score = model.evaluate(x_test, to_categorical(y_test),

verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

In the case of CNN, in comparison to the neural network exam-

ple from the previous chapter, you will notice that we reached a high

accuracy value in fewer epochs although each epoch took a little longer.

Epoch 1/3

60000/60000 [====] - 33s 555us/step - loss: 0.1683 -

accuracy: 0.9504

Epoch 2/3

60000/60000 [====] - 27s 444us/step - loss: 0.0493 -

accuracy: 0.9847

Epoch 3/3

60000/60000 [====] - 48s 792us/step - loss: 0.0331 -

accuracy: 0.9898
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Test loss: 0.03353308427521261

Test accuracy: 0.9894000291824341

12.5 Summary

• CNN was originally developed as a mathematical model of vision.

Hence they are well suited for solving computer vision problems.

• CNNs are created by composition of convolution and maxpooling

layer followed by a classifier or regressor, which is typically a

neural network.

• The parameters of the convolution layer are learned using the

back-propagation process.

12.6 Exercises

1. What is the effect of increasing the number of convolution layers

in a neural network?

2. Modify the above code and run it with the FashionMNIST

data set available at https://github.com/zalandoresearch/

fashion-mnist. This data set also has 10 categories such a

trousers, shoes, etc.

https://github.com/
https://github.com/


http://taylorandfrancis.com


Part III

Image Acquisition
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Chapter 13

X-Ray and Computed Tomography

13.1 Introduction

So far we have covered the basics of Python, its scientific modules,

and image processing techniques. In this chapter, we begin our journey

of learning image acquisition. We will begin the discussion with x-ray

generation and detection. We will discuss the various modes in which x-

ray interacts with matter. These methods of interaction and detection

have resulted in many modes of x-ray imaging such as angiography,

fluoroscopy, etc. We complete the discussion with the basics of CT,

reconstruction, and artifact removal.

13.2 History

X-rays were discovered by Wilhelm Conrad Röntgen, a German

physicist, during his experiment with cathode ray tubes. He called these

mysterious rays “x-rays,” the symbol “x” being used in mathematics

to denote unknown variables. He found that unlike visible light, these

rays passed through most materials and left a characteristic shadow

on a photographic plate. His work was published as “On New Kind

of Rays” [R9̈5] and was subsequently awarded the first Nobel Prize in

Physics in 1901.

277
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Subsequent study of x-rays revealed their true physical nature. They

are a form of electromagnetic radiation similar to light, radio waves, etc.

They have a wavelength of 10 to 0.01 nanometers. Although they are

well known and studied and no longer mysterious, they continue to be

referred to as x-rays. Even though the majority of x-rays are man-made

using x-ray tubes, they are also found in nature. The branch of x-ray

astronomy studies celestial objects by measuring the x-rays emitted.

Since Röntgen’s days, the x-ray has found very widespread use

across various fields including radiology, geology, crystallography,

astronomy, etc. In the field of radiology, x-rays are used in fluo-

roscopy, angiography, computed tomography (CT), etc. Today, many

non-invasive surgeries are performed under x-ray guidance, providing a

new “eye” to the surgeons.

13.3 X-Ray Generation

An x-ray imaging system consists of a generator producing a con-

stant and reliable output of x-rays, an object (typically a patient)

through which the x-ray traverses, and an x-ray detector to measure

the intensity of the rays after passing through the object. We begin

with a discussion of the x-ray generation process using an x-ray tube.

13.3.1 X-Ray Tube Construction

An x-ray tube consists of four major parts. They are an anode, a

cathode, a tungsten target, and an evacuated tube to hold the three

parts together, as shown in Figure 13.1.

The cathode (negative terminal) produces electrons (negatively

charged) that are accelerated toward the anode (positive terminal).

The filament in the cathode is heated by passing current, which gener-

ates electrons by the process of thermionic emission, defined as emission
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FIGURE 13.1: Components of an x-ray tube.

of electrons by absorption of thermal energy. The number of electrons

produced is proportional to the current through the filament. This cur-

rent is generally referred to as “tube current” and is generally measured

in “mA” or “milli-amperes.”

Since the interior of an x-ray tube can be hot, a metal with a high

melting point such as tungsten is chosen for the filament. Tungsten is

also a malleable material, ideal for making fine filaments. The electron

produced is focused by the focusing cup, which is maintained at the

same negative potential as the cathode. The glass enclosure in which

the x-ray is generated is evacuated so that the electrons do not interact

with other molecules and can also be controlled independently and

precisely. The focusing cup is maintained at a very high potential in

order to accelerate the electrons produced by the filament.

The anode is bombarded by the fast-moving electrons. The anode

is generally made from copper so that the heat produced by the bom-

bardment of the electrons can be properly dissipated. A tungsten target

is fixed to the anode. The fast-moving electrons either knock out the

electrons from the inner shells of the tungsten target or are slowed

due to the tungsten nucleus. The former results in the characteris-

tic x-ray spectrum while the latter results in the general spectrum or
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Bremsstrahlung spectrum. The two spectrums together determine the

energy distribution in an x-ray and will be discussed in detail in the

next section.

The cathode is stationary but the anode can be stationary or rotat-

ing. The rotating anode allows even distribution of heat and conse-

quently longer life of the x-ray tube.

There are three parameters that control the quality and quantity

of an x-ray. These parameters together are sometimes referred to as an

x-ray technique.

They are:

1. Tube voltage measured in kVp.

2. Tube current measured in mA.

3. X-ray exposure time in ms.

In addition, a filter (such as a sheet of aluminum) is placed in the

path of the beam, so that lower-energy x-rays are absorbed. This will

be discussed in the next section.

The tube voltage is the electric potential between the cathode and

the anode. Higher voltage results in increased velocity of the electrons

between the cathode and the anode. This increased velocity will pro-

duce high-energy x-rays while a lower voltage results in lower-energy

x-rays and consequently a noisier image. The tube current determines

the number of electrons being emitted. This in turn determines the

quantity of x-rays. The exposure time determines the time for which

the object or patient is exposed to x-rays. This is generally the time

the x-ray tube is operating.

13.3.2 X-Ray Generation Process

The x-ray generated by the tube does not contain photons of a sin-

gle energy. It instead consists of a large range of energy. The relative

number of photons at each energy level is measured to generate a his-

togram. This histogram is called the spectral distribution or spectrum
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for short. There are two types of x-ray spectrums [CDM84b]. They are

the general radiation or Bremsstrahlung “Braking” spectrum, which

is a continuous radiation, and the characteristic spectrum, a discrete

entity as shown in Figure 13.2.

FIGURE 13.2: X-ray spectrum illustrating characteristic and
Bremsstrahlung.

When the fast-moving electrons produced by the cathode move very

close to the nucleus of the tungsten atom (Figure 13.3), the electrons

decelerate and the loss of energy is emitted as radiation. Most of the

radiation is at a higher wavelength (or lower energy) and hence is dis-

sipated as heat. The electrons are not decelerated completely by one

tungsten nucleus, and hence at every stage of deceleration, radiation of

lower wavelength or higher energy is emitted. Since the electrons are

decelerated or “braked” in the process, this spectrum is referred to as

Bremsstrahlung or braking spectrum. This spectrum gives the x-ray

spectrum its wide range of photon energy levels.

From the energy equation, we know that

E =
hc

λ
(13.1)
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FIGURE 13.3: Production of Bremsstrahlung or braking spectrum.

where h = 4.135 ∗ 10−18eV s is Planck’s constant, c = 3 ∗ 108m/s is

the speed of light, and λ is the wavelength of the x-ray measured in

Angstroms (Å= 10−10m). The product of h and c is 12.4∗10−10keV m.

When E is measured in keV, the equation simplifies to

E =
12.4

λ
(13.2)

The inverse relationship between E and λ implies that a shorter

wavelength produces a higher-energy x-ray and vice versa. For an x-ray

tube powered at 112 kVp, the maximum energy that can be produced is

112 keV and hence the corresponding wavelength is 0.11 Å. This is the

shortest wavelength and also the highest energy that can be achieved

during the production of Bremsstrahlung spectrum. This is the right-

most point in the graph in figure 13.2. However, most of the x-ray will

be produced at much higher wavelength and consequently lower energy.

The second type of radiation spectrum (Figure 13.4) results from a

tungsten electron in its orbit interacting with the emitted electron. This

is referred to as characteristic radiation, as the peaks in the histogram

of the spectrum are characteristic of the target material.
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The fast-moving electrons eject the electron from the k-shell (inner

shell) of the tungsten atom. Since this shell is unstable due to the

ejection of the electron, the vacancy is filled by an electron from the

outer shell. This is accompanied by release of x-ray energy. The energy

and wavelength of the electron are dependent on the binding energy

of the electron whose position is filled. Depending on the shell, these

characteristic radiations are referred as K, L, M and N characteristic

radiation and are shown in Figure 13.2.

FIGURE 13.4: Production of characteristic radiation.

X-rays do not just interact with the tungsten atom, they can inter-

act with any atom in their path. Thus, a molecule of oxygen in the path

will be ionized by an x-ray knocking out its electron. This could change

the x-ray spectrum and hence the x-ray generator tube is maintained

at vacuum.



284 Image Processing and Acquisition using Python

13.4 Material Properties

13.4.1 Attenuation

Once the x-ray is generated, it is allowed to pass through a patient

or an object. The material in the object reduces the intensity of the

x-ray either by absorption or deflection of photons in the beam. This

process is referred to as attenuation. If there are multiple materials,

each of the materials can absorb or deflect the x-ray and consequently

reduce its intensity.

The attenuation is quantified by using a linear attenuation coeffi-

cient (µ), defined as the attenuation per centimeter of the object. The

attenuation is directly proportional to the distance traveled and the

incident intensity. The intensity of the x-ray beam after attenuation is

given by the Lambert-Beer law (Figure 13.5) expressed as

I = I0e
−µδx (13.3)

where I0 is the initial x-ray intensity, I is the exiting x-ray intensity,

µ is the linear attenuation coefficient of the material, and δx is the

thickness of the material. The law also assumes that the input x-ray

intensity is mono-energetic or monochromatic.

Monochromatic radiation is characterized by photons of single

intensity, but in reality all radiations are polychromatic and have pho-

tons of varying intensity with spectra similar to Figure 13.2. Polychro-

matic radiation is characterized by photons of varying energy (quality

and quantity), with the peak energy being determined by the peak

kilovoltage (kVp).

When polychromatic radiation passes through matter, the longer

wavelengths and lower energy are preferentially absorbed. This

increases the mean energy of the beam. This process of increased mean

energy of the beam is referred to as “beam hardening.”
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FIGURE 13.5: Lambert-Beer law for monochromatic radiation and for
a single material.

In addition to the attenuation coefficient, the characteristics of a

material under x-ray can also be defined using the half-value layer. This

is defined as the thickness of material needed to reduce the intensity

of the x-ray beam by half. So from Equation 13.3 for a thickness δx =

HV L (half value layer),

I =
I0

2
(13.4)

Hence,

I0e
−µHV L =

I0

2
(13.5)

µHV L = 0.693 (13.6)

HV L =
0.693

µ
(13.7)

For a material with linear attenuation coefficient of 0.1/cm, the

HVL is 6.93 cm. This implies that when a monochromatic beam of x-

ray passes through the material, its intensity drops by half after passing

through 6.93 cm of that material.
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TABLE 13.1: Relationship between kVp and HVL.

kVp HVL(mm of Al)
50 1.9
75 2.8
100 3.7
125 4.6
150 5.4

The HVL depends not only on the material being studied but also

on the tube voltage. High tube voltage produces a smaller number of

low-energy photons, i.e., the spectrum in Figure 13.2 will be shifted to

the right. The mean energy will be higher and the beam will be harder.

This hardened beam can penetrate material without a significant loss

of energy. Thus, the HVL will be high for high x-ray tube voltage. This

trend can be seen in the HVL of aluminum at different tube voltages

given in Table 13.1.

13.4.2 Lambert-Beer Law for Multiple Materials

For an object with n materials (Figure 13.6), the Lambert-Beer law

is applied in cascade,

I = I0e
−µ1∆xe−µ2δx...e−µnδx = I0e

−
∑n
i=1 µi∆x (13.8)

When the logarithm of the intensities is taken, for a continuous

domain we obtain

p = − ln

(
I

I0

)
=

n∑
i=1

µi∆x =

∫
µ(x)dx (13.9)

Using this equation, we see that the value p, the projection image

expressed in energy intensity, corresponding to the digital value at a

specific location in that image, is simply the sum of the product of

attenuation coefficients and thicknesses of the individual components.
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This is the basis of image formation in x-ray. The inverse of this sum-

mation process is the CT reconstruction that will be discussed shortly.

FIGURE 13.6: Lambert-Beer law for multiple materials.

13.4.3 Factors Determining Attenuation

The energy of the beam is one of the factors that determines the

amount of attenuation. As we have seen earlier, lower-energy beams get

preferentially absorbed compared to higher-energy beams.

The density of a substance through which x-rays pass makes a sig-

nificant contribution to the attenuation. A higher-density substance like

bone attenuates x-rays more than a lower-density substance like tissue.

Also different types of tissue have different densities and hence differ-

ent attenuation, resulting in different contrast on the x-ray image. The

physical characteristic that determines the attenuation is the number

of electrons per gram in the material. A material with a higher number

of electrons per gram has a higher probability of interacting with the

x-rays. The number of electrons per gram is given by

N =
N0Z

A
(13.10)

where N is the number of electrons per gram, N0 = 6 ∗ 1023 is Avo-

gadro’s number, Z is the atomic number, and A is the atomic weight
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of the substance. Since Avogadro’s number is a constant, the number

of electrons per gram is dependent only on Z and A.

13.5 X-Ray Detection

So far, we have discussed x-ray generation using an x-ray tube,

the shape of the x-ray spectrum, and also studied the change in x-ray

intensity as it traverses a material due to attenuation. These attenuated

x-rays have to be converted to a human-viewable form. This conversion

process can be achieved by exposing them on a photographic plate to

obtain an x-ray image or viewing them using a TV screen or converting

to a digital image, all using the process of x-ray detection. There are

three different types of x-ray radiation detectors in practice, namely

ionization, fluorescence, and absorption.

1. Ionization detection

In the ionization detector, the x-rays ionize the gas molecules in

the detector and by measuring the ionization, the intensity of the

x-ray is measured. An example of such a detector is the Geiger

Muller counter [Mac83] shown in Figure 13.7. These detectors are

used to measure the intensity of radiation and are not used for

creating x-ray images.

2. Scintillation detection

There are different types of scintillation detectors. The most pop-

ular are the Image Intensifier (II) and Flat Panel Detector (FPD).

In an II, [Mac83], [CDM84b], [FH00], the x-rays are converted to

electrons that are accelerated to increase their energy. The elec-

trons are then converted back to light and are viewed on a TV

or a computer screen. In the case of an FPD, the x-rays are con-

verted to visible light and then to electrons using a photo diode.
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FIGURE 13.7: Ionization detector.

The electrons are recorded using a camera. In both the II and

FPD, the process of converting x-ray to electron and accelerating

it is used for improving the image gain. Modern technology has

allowed the creation of a large FPD with very high quality and

hence the FPD is rapidly replacing the II. Also, FPD occupies

significantly less space than the II. We will discuss both in detail.

13.5.1 Image Intensifier

The II (Figure 13.8) consists of an input phosphor and photocath-

ode, an electrostatic focusing lens, an accelerating anode and an out-

put fluorescent screen. The x-ray beam passes through the patient

and enters the II through the input phosphor. The phosphor gener-

ates light photons after absorbing the x-ray photons. The light photons

are absorbed by the photocathode and electrons are emitted. The elec-

trons are then accelerated by a potential difference toward the anode.

The anode focuses the electron onto an output fluorescence screen that

emits the light that will be displayed using a TV screen, recorded on

an x-ray film, or recorded by a camera onto a computer.

The input phosphor is made of cesium iodide (CsI) and is vapor

deposited to form a needlelike structure that prevents diffusion of light

and hence improves resolution. It also has greater packing density and
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hence higher conversion efficiency, even with smaller thickness (needed

for good spatial resolution). A photocathode emits electrons when light

photons are incident on it. The anode accelerates the electrons. The

higher the acceleration the better is the conversion of electrons to light

photons at the output phosphor. The input phosphor is curved, so

that electrons travel the same length toward the output phosphor. The

output fluorescent screen is silver-activated zinc-cadmium sulfide. The

output can be viewed using a series of lenses on a TV or it can be

recorded on a film.

FIGURE 13.8: Components of an image intensifier.

13.5.2 Multiple-Field II

The field size is changed by changing the position of the focal point,

the point of intersection for the left and right electron beams. This is
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achieved by increasing the potential in the electrostatic lens. Lower

potential results in the focus being close to the anode and hence the

full view of the anatomy is exposed to the output phosphor. At higher

potential, the focus moves away from the anode and hence only a por-

tion of the input phosphor is exposed to the output phosphor. In both

cases, the size of the input and output phosphors remains the same but

in the smaller mode, a portion of the image from the input phosphor

is removed from the view due to a farther focal point.

In a commercial x-ray unit, these sizes are specified in inches. A

12-inch mode will cover a larger anatomy while a 6-inch mode will

cover a smaller anatomy. Exposure factors are automatically increased

for smaller II modes to compensate for the decreased brightness from

minification.

Since the electrons travel large distances during their journey from

photocathode to anode, they are affected by the earth’s magnetic field.

The earth’s magnetic field changes even for small motions of the II

and hence the electron path gets distorted. The distorted electron path

produces a distorted image on the output fluorescent screen. The dis-

tortion is not uniform but increases near the edge of the II. Hence the

distortion is more significant for a large II mode than for a smaller II

mode. The distortions can be removed by careful design and material

selection or more preferably using image processing algorithms.

13.5.3 Flat Panel Detector (FPD)

The FPD (Figure 13.9) consists of a scintillation detector, a photo

diode, an amorphous silicon, and a camera. The x-ray beam passes

through the patient and enters the FPD through the scintillation detec-

tor. The detector generates light photons after absorbing the x-ray pho-

tons. The light photons are absorbed by the photo diode and electrons

are emitted. The electrons are then absorbed by the amorphous silicon

layer, which produces an image that is recorded using a charge-couple

device (CCD) camera.
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Similar to the II, the scintillation detector is made of cesium iodide

(CsI) or gadolinium oxysulfide and is vapor deposited to form a needle-

like structure, which acts like fiber optic cable and prevents diffusion of

light and improves resolution. The CsI is generally coupled with amor-

phous silicon, as CsI is an excellent absorber of x-ray and emits light

photons at a wavelength best suited for amorphous silicon to convert

to electrons.

FIGURE 13.9: Flat panel detector schematic.

The II needs extra length to allow accelerating of the electron, while

the FPD does not. Hence the FPD occupies significantly less space

compared to the II. The difference becomes significant as the size of

the detector increases. IIs are affected by the earth’s magnetic field

while such problems do not exist for the FPD. Hence the FPD can

be mounted on an x-ray machine and be allowed to rotate around the

patient without distorting the image. Although the II suffers from some

disadvantages, it is simpler in its construction and electronics.

The II or FPD can be bundled with an x-ray tube, a patient table,

and a structure to hold all these parts together, to create an imag-

ing system. Such a system could also be designed to revolve around the

patient table axis and provide images in multiple directions to aid diag-

nosis or medical intervention. Examples of such systems, fluoroscopy

and angiography, are discussed below.
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13.6 X-Ray Imaging Modes

13.6.1 Fluoroscopy

The first-generation fluoroscope [Mac83],[CDM84b] consisted of a

fluoroscopic screen made of copper-activated cadmium sulfide that

emitted light in the yellow-green spectrum of visible light. The image

was so faint that the viewing was carried out in a dark room, with the

doctors adapting their eyes to the dark prior to examination. Since the

intensity of fluorescence was less, rod vision in the eye was used and

hence the ability to differentiate shades of gray was also poor. These

problems were alleviated with the invention of the II discussed earlier.

The II allowed intensification of the light emitted by the input phos-

phor so that it could safely and effectively be used to produce a system

(Figure 13.10) that could generate and detect x-rays and also produce

images that can be studied using TVs and computers.

13.6.2 Angiography

A digital angiographic system [Mac83], [CDM84b] consists of an x-

ray tube, a detector such as a II or FPD and a computer to control

the system and record or process the images. The system is similar to

fluoroscopy except that it is primarily used to visualize blood vessels

opacified using a contrast. The x-ray tube must have a larger focal

spot and also provide a constant output over time. The detector must

also provide a constant acceleration voltage to prevent variation in gain

during acquisition. A computer controls the whole imaging chain.

The computing system also performs digital subtraction in the case

of digital subtraction angiography (DSA) [CDM84b] on the obtained

images. In the DSA process, the computer controls the x-ray technique

so that uniform exposure is obtained across all images. The computer

obtains the first set of images without the injection of contrast and

stores them as a mask image. Subsequent images obtained under the
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(a) Fluoroscopy machine.

(b) Image of a head phantom acquired using a
II system.

FIGURE 13.10: Fluoroscopy machine. Original image reprinted with
permission from Siemens AG.
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injection of contrast are stored and subtracted from the mask image to

obtain the image with the blood vessel alone.

13.7 Computed Tomography (CT)

The fluoroscopy and angiography discussed so far produce a pro-

jection image, which is a shadow of part of the body under x-ray.

These systems provide a planar view from one direction and may also

contain other organs or structures that impede the ability to make a

clear diagnosis. CT on the other hand, provides a slice through the

patient and hence offers an unimpeded view of the organ of interest.

In CT, a series of x-ray images are acquired all around the object or

patient. A computer then processes these images to produce a map of

the original object using a process called reconstruction. Sir Godfrey

N. Hounsfield and Dr. Allan McCormack developed CT independently

and later shared the Nobel Prize for Physiology in 1979. The utility of

this technique became so apparent that an industry quickly developed

around it, and it continues to be an important diagnostic tool for physi-

cians and surgeons. For more details refer to [Bus00],[Hen83],[Kal00].

13.7.1 Reconstruction

The basic principle of reconstruction is that the internal struc-

ture of an object can be computed from multiple projections of that

object. In the case of CT reconstruction, the internal structure being

reconstructed is the spatial distribution of the linear attenuation coef-

ficients (µ) of the imaged object. Mathematically, Equation 13.9 can

be inverted by the reconstruction process to obtain the distribution of

the attenuation coefficients.

In clinical CT, the raw projection data is often a series of 1D vec-

tors of x-ray projection obtained at various angles for which the 2D
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reconstruction yields a 2D attenuation coefficient matrix. In the case

of 3D CT, a series of 2D images obtained at various angles are used

to obtain a 3D distribution of the attenuation coefficient. For the sake

of simplicity, the reconstructions discussed in this chapter will focus

on 2D reconstructions and hence the projection images are 1D vector

unless otherwise specified.

13.7.2 Parallel-Beam CT

The original method used for acquiring CT data used parallel-beam

geometry such as is shown in Figure 13.11. As shown in the figure, the

paths of the individual rays of x-ray from the source to the detector are

parallel to each other. An x-ray source is collimated to yield a single x-

ray beam, and the source and detector are translated along the axis per-

pendicular to the beam to obtain the projection data (a single 1D vector

for a 2D CT slice). After the acquisition of one projection, the source-

detector assembly is rotated and subsequent projections are obtained.

This process is repeated until a 180-degree projection is obtained. The

reconstruction is obtained using the central slice theorem or the Fourier

slice theorem [KS88]. This method forms the basis for many CT recon-

struction techniques.

13.7.3 Central Slice Theorem

Consider the object shown in Figure 13.12 to be reconstructed.

The original coordinate system is x-y and when the detector and x-

ray source are rotated by an angle θ, then their coordinate system is

defined by x′−y′. In this figure, R is the distance between the iso-center

(i.e., center of rotation) and any ray passing through the object. After

logarithmic conversion, the x-ray projection at an angle (θ) is given by

gθ(R) =

∫ ∫
f(x, y)δ(x cos θ + y sin θ −R)dx dy (13.11)
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FIGURE 13.11: Parallel-beam geometry.

where δ is the Dirac-Delta function [Bra99].

The Fourier transform of the distribution is given by

F (u, v) =

∫ ∫
f(x, y)e−i2π(ux+vy)dx dy (13.12)

where u and v are frequency components in perpendicular directions.

Expressing u and v in polar coordinates, we obtain u = ν cos θ and

v = ν sin θ , where ν is the radius and θ is the angular position in the

Fourier space.

Substituting for u and v and simplifying yields,

F (ν, θ) =

∫ ∫
f(x, y)e−i2vπ(x cos θ+y sin θ)dx dy (13.13)

The equation can be rewritten as

F (ν, θ) =

∫ ∫ ∫
f(x, y)e−i2πvRδ(x cos θ + y sin θ −R)dR dx dy

(13.14)
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FIGURE 13.12: Central slice theorem.

Rearranging the integrals yields,

F (ν, θ) =

∫ (∫ ∫
f(x, y)δ(x cos θ + y sin θ −R)

)
e−i2πvRdR

(13.15)

From Equation 13.11, we can simplify the above equation as

F (ν, θ) =

∫
ge(R)ei2πvRdR = FT (ge(R)) (13.16)

where FT( ) refers to the Fourier transform of the enclosed function.

Equation 13.16 shows that the radial slice along an angle θ in the

2D Fourier transform of the object is the 1D Fourier transform of the

projection data acquired at that angle θ. Thus, by acquiring projections

at various angles, the data along the radial lines in the 2D Fourier

transform can be obtained. Note that the data in the Fourier space

is obtained using polar sampling. Thus, either a polar inverse Fourier

transform must be performed or the obtained data must be interpolated
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onto a rectilinear Cartesian grid so that Fast Fourier Transform (FFT)

techniques can be used.

However, another approach can also be taken. Again, f(x, y) is

related to the inverse Fourier transform, i.e.,

f(x, y) =

∫ ∫
F (ν, θ)ei2π(ux+vy)du dv (13.17)

By using a polar coordinate transformation, u, v can be written

as u = cos θ and v = sin θ. To effect a coordinate transformation, the

Jacobian is used and is given by

J =
∂u
∂ν

∂u
∂θ

∂v
∂ν

∂v
∂θ

=
cos θ −ν sin θ

sin θ ν cos θ
= ν (13.18)

Hence,

du dv = |ν|dν dθ (13.19)

Thus,

f(x, y) =

∫ ∫
F (ν, θ)ei2π(x cos θ+y sin θ)|ν|dν dθ (13.20)

Using Equation 13.16, we can obtain

f(x, y) =

∫ ∫
FT (gθ(R))ei2π(x cos θ+y sin θ)|ν|dν dθ (13.21)

f(x, y) =

∫ ∫
FT (gθ(R))ei2πvRδ(x cos θ + y sin θ −R)|ν|dν dθ dR

(13.22)

f(x, y) =

∫ ∫ (
FT (gθ(R))|ν|ei2πvRdν

)
δ(x cos θ + y sin θ −R)dθ dR

(13.23)
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The term in the braces is the filtered projection, which can be

obtained by multiplying the Fourier transform of the projection data

by |ν| in the Fourier space or equivalently by performing a convolution

of the real space projections and the inverse Fourier transform of the

function |ν|. Because the function looks like a ramp, the filter generated

is commonly called the “ramp filter.”

Thus,

f(x, y) =

∫ ∫
FT (R, θ) • δ(x cos θ + y sin θ −R)dθ dR (13.24)

where FT (R, θ) is the filtered projection data at location R acquired

at angle θ is given by

f(x, y) =

∫ ∫
FT (gθ(R))|ν|ei2πνRdR (13.25)

Once the convolution or filtering is performed, the resulting data is

reconstructed using Equation 13.25. This process is referred to as the

filtered back projection (FBP) technique and is the most commonly

used technique in practice.

13.7.4 Fan-Beam CT

The fan-beam CT scanners (Figure 13.13) have a bank of detec-

tors, with all detectors being illuminated by x-rays simultaneously from

every projection angle. Since the detector acquires images in one x-ray

exposure, it eliminates the translation at each angle. Since translation

is eliminated, the system is mechanically stable and faster. However,

x-rays scattered (we will discuss scatter correction later) by the object

reduce the contrast in the reconstructed images compared to parallel-

beam reconstruction. But these machines are still popular due to faster

acquisition time, which allows reconstruction of a moving object, like

slices of the heart, in one breath-hold. The images acquired using fan-

beam scanners can be reconstructed using a rebinning method that



X-Ray and Computed Tomography 301

converts fan-beam data into parallel-beam data and then uses the cen-

tral slice theorem for reconstruction. Currently, this approach is not

used and is replaced by a direct fan-beam reconstruction method based

on filtered back-projection.

A fan-beam detector with one row of detecting elements produces

one CT slice. The current generations of fan-beam CT machines have

multiple detector rows and can acquire 8, 16, 32 slices, etc., in one

rotation of the object and are referred to as multi-slice CT machines.

The benefit is faster acquisition time compared to single slice and also

covering a larger area in one exposure. With the advent of multi-slice

CT machines, a whole-body scan of the patient can also be obtained.

FIGURE 13.13: Fan-beam geometry.

Figure 13.14 is the axial slice of the region around the human kidney.

It is one of the many slices of the whole body scan shown in the montage

in Figure 13.15. These slices were converted into a 3D object (Figure

13.16) using MimicsTM [Mat20a].

13.7.5 Cone-Beam CT

Cone-beam acquisition or CBCT (Figure 13.17) consists of 2D

detectors instead of 1D detectors used in the parallel and fan-beam

acquisitions. As with fan-beam, the source and detector rotate relative

to the object, and the projection images are acquired. The 2D pro-

jection images are then reconstructed to obtain 3D volume. Since a

2D region is imaged, cone-beam-based volume acquisition makes use
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FIGURE 13.14: Axial CT slice.

FIGURE 13.15: Montage of all the CT slices of the human kidney
region.

of x-rays that otherwise would have been blocked. The advantages are

potentially faster acquisition time, better pixel resolution, and isotropic

(same voxel size in x, y and z directions) voxel resolution. The most

commonly used algorithm for cone-beam reconstruction is the Feld-

kamp algorithm [FDK84], which assumes a circular trajectory for the

source and flat detector and is based on filtered back-projection.
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FIGURE 13.16: 3D object created using the axial slices shown in the
montage. The 3D object in green is superimposed on the slice informa-
tion for clarity.

FIGURE 13.17: Cone beam geometry.

13.7.6 Micro-CT

Micro-tomography (commonly known as industrial CT scanning),

like tomography, uses x-rays to create cross-sections of a 3D object that

later can be used to re-create a virtual model without destroying the
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original model. The term micro is used to indicate that the pixel sizes of

the cross-sections are in the micrometer range. These pixel sizes have

also resulted in the terminology micro-computed tomography, micro-

CT, micro-computer tomography, high-resolution x-ray tomography,

and similar terminologies. All of these names generally represent the

same class of instruments.

This also means that the machine is much smaller in design com-

pared to the human version and is used to image smaller objects. In

general, there are two types of scanner setups. In the first setup, the

x-ray source and detector are typically stationary during the scan while

the animal or specimen rotates. In the second setup, much more like

a clinical CT scanner, the animal or specimen is stationary while the

x-ray tube and detector rotate.

The first x-ray micro-CT system was conceived and built by Jim

Elliott in the early 1980s [ED82]. The first published x-ray micro-CT

images were reconstructed slices of a small tropical snail, with pixel size

about 50 micrometers, which appeared in the same paper.

Micro-CT is generally used for studying small objects such as poly-

mers, plastics, micro devices, electronics, paper, and fossils. It is also

used in the imaging of small animals such as mice, or insects, etc.

13.8 Hounsfield Unit (HU)

The HU is the system of units used in CT that represents the linear

attenuation coefficient of an object. It provides a standard way of com-

paring images acquired using different CT machines. The conversion of

reconstructed pixel values to HUs is a linear transformation given by

HU =

(
µ− µw
µw

)
∗ 1000 (13.26)
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where µ is the linear attenuation coefficient of the object and µw is the

linear attenuation coefficient of water. Thus, water has an HU of 0 and

air has an HU of −1000 since µ of air is 0.

The following are the steps to obtain the HU equivalent of a recon-

structed image:

• A water phantom consisting of a cylinder filled with water is

reconstructed using the same x-ray technique as the reconstructed

patient slices.

• The attenuation coefficient of water and air (present outside the

cylinder) is measured from the reconstructed slice.

• A linear fit is established with the HU of water (0) and air

(−1000) being the ordinate and the corresponding linear atten-

uation coefficients measured from the reconstructed image being

the abscissa.

• Any patient data reconstructed is then mapped to HUs using the

determined linear fit.

Since the CT data is calibrated to HUs, the data in the images

acquires meaning not only qualitatively but also quantitatively. Thus,

an HU number of 1000 for a given pixel or voxel represents quantita-

tively a bone in an object.

Unlike MRI, microscopy, ultrasound, etc., due to use of HUs for

calibration, CT measurement is a map of a physical property of the

material. This is handy while performing image segmentation, as the

same threshold or segmentation technique can be used for measure-

ments from various patients at various intervals and conditions. It is

also useful in performing quantitative CT, a process of measuring the

property of the object using CT.
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13.9 Artifacts

In all the prior discussions, it was assumed that the x-ray beam is

mono-energetic. It was also assumed that the geometry of the imaging

system is well characterized, i.e., there is no change in the orbit that

the imaging system follows with reference to the object. However, in

current clinical CT technology, the x-ray beam is not mono-energetic

and the geometry is not well characterized. This results in errors in the

reconstructed image that are commonly referred as artifacts, defined as

any discrepancy between the reconstructed value in the image and the

true attenuation coefficients of the object [Hsi03]. Since the definition

is broad and can encompass many things, discussions of artifacts are

generally limited to clinically significant errors. CT is more prone to

artifacts than conventional radiography, as multiple projection images

are used. Hence errors in different projection images cumulate to pro-

duce artifacts in the reconstructed image. These artifacts could annoy

radiologists or in some severe cases hide important details that could

lead to misdiagnosis.

Artifacts can be eliminated to some extent during acquisition. They

can also be removed by pre-processing projection images or post-

processing the reconstructed images. There are no generalized tech-

niques for removing artifacts and hence new techniques are devised

depending on the application, anatomy, etc. Artifacts cannot be com-

pletely eliminated but can be reduced by using correct techniques,

proper patient positioning, and improved design of CT scanners, or

by software provided with the CT scanners.

There are many sources of error in the imaging chain that can result

in artifacts. They can generally be classified as artifacts due to the

imaging system or artifacts due to the patient. In the following discus-

sion, the geometric alignment, offset and gain correction are caused by

the imaging system while the scatter and beam-hardening artifacts are

caused by the nature of object or patient being imaged.
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13.9.1 Geometric Misalignment Artifacts

The geometry of a CBCT system is specified using six parameters,

namely the three rotation angles (angles corresponding to u, v and w

axes in Figure 13.18) and three translations along the principal axis

(u, v, w in Figure 13.18). An error in these parameters can result in

a ring artifact [CMSJ05],[FH00], double wall artifact, etc., which are

visual and hence cannot be misdiagnosed as a pathology. However, very

small errors in these parameters can result in blurring of edges and

hence misdiagnosis of the size of the pathology, or shading artifacts that

could shift the HU number. Hence these parameters must be determined

accurately and corrected prior to reconstruction.

FIGURE 13.18: Parameters defining a cone-beam system.

13.9.2 Scatter

In our previous discussion, we learned that an incident x-ray photon

ejects an electron from the orbit of the atom, and consequently a low-

energy x-ray photon is scattered from the atom. The scattered photon

travels at an angle from its incident direction (Figure 13.19). These

scattered radiations are detected but arrive at the detector like the pri-

mary radiation. They reduce the contrast of the image and produce
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blurring. The effect of scatter in the final image is different for con-

ventional radiography and CT. In the case of radiography, the images

have poor contrast but in the case of CT, the logarithmic transforma-

tion results in a non-linear effect.

Scatter also depends on the type of image acquisition technique.

For example, fan-beam CT has less scatter compared to a cone-beam

CT due to the smaller height of the beam.

One of the methods to reduce scatter is the air gap technique. In this

technique, a large air-gap is maintained between the patient and the

detector. Since the scattered radiation at a large angle from the incident

direction cannot reach the detector, it will not be used in the formation

of the image. It is not always possible to provide an air gap between the

patient and the detector, so grids or post-collimators [CDM84b],[Hsi03]

made of lead strips are used to reduce scatter. The grids contain space

which corresponds to the photo-detector being detected. The scattered

radiation arriving at a large angle will be absorbed by lead and only pri-

mary radiations arriving at a small angle from the incident direction is

detected. The third approach is software correction [LK87],[OFKR99].

Since scatter is a low-frequency structure causing blurring, it can be

approximated by a number estimated using the beam-stop technique

[Hsi03]. This, however, does not remove the noise associated with the

scatter.

FIGURE 13.19: Scatter radiation.
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13.9.3 Offset and Gain Correction

Ideally, the response of a detector must remain constant for a con-

stant x-ray input at any time. But due to temperature fluctuations dur-

ing acquisition, non-idealities in the production of detectors and varia-

tions in the electronic readouts, a non-linear response may be obtained

in the detectors. These non-linear responses result in the output of

that detector cell being inconsistent with reference to all the neigh-

boring detector pixels. During reconstruction, the non-linear responses

produce ring artifacts [Hsi03] with their center being located at the

iso-center. These circles may not be confused with human anatomy, as

there are no parts which form a perfect circle, but they degrade the

quality of the image and hide details and hence need to be corrected.

Moreover the detector produces some electronic readout, even when the

x-ray source is turned off. This readout is referred to as “dark current”

and needs to be removed prior to reconstruction.

Mathematically the flat field and zero offset corrected image (IC)

is given by

IC(x, y) =
IA− ID
IF − ID

(x, y) ∗Average(IF − ID) (13.27)

where IA is the acquired image, ID is the dark current image, IF is

flat field image, which is acquired at the same technique as the acquired

image with no object in the beam. The ratio of the differences is mul-

tiplied by the average value of (IF − ID) for gain normalization. This

process is repeated for every pixel. The dark field images are to be

acquired before each run, as they are sensitive to temperature varia-

tions. Other software-based correction techniques based on image pro-

cessing are also used to remove the ring artifacts. They can be classified

as pre-processing and post-processing techniques. The pre-processing

techniques are based on the fact that the rings in the reconstructed

images appear as vertical lines in the projection space. Since no feature

in an object except those at the iso-center can appear as vertical lines,
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the pixels corresponding to vertical lines can be replaced using esti-

mated pixel values. Even though the process is simple, the noise and

complexity of human anatomy present a big challenge in the detection

of vertical lines. Another correction scheme is the post-processing tech-

nique [Hsi03]. The rings in the reconstructed images are identified and

removed. Since ring detection is primarily an arc detection technique,

it could result in over-correcting the reconstructed image for features

that look like arcs. So in a supervised ring removal technique, incon-

sistencies across all views are considered. To determine the position of

pixels corresponding to a given ring radius, a mapping that depends on

the location of source, object and image is used.

13.9.4 Beam Hardening

The spectrum (Figure 13.2) does not have a unique energy but has

a wide range of energies. When such an energy spectrum is incident

on a material, the lower energy gets attenuated faster as it is prefer-

entially absorbed than the higher-energy. Hence a polychromatic beam

becomes harder or richer in higher-energy photons as it passes through

the material. Since the reconstruction process assumes an “ideal” mono-

chromatic beam, the images acquired using a polychromatic beam pro-

duce cupping artifacts [BK04]. The cupping artifact is characterized by

a radial increase in intensity from the center of the reconstructed image

to its periphery. Unlike ring artifacts, this artifact presents difficulty,

as it can mimic some pathology and hence can lead to misdiagnosis.

The cupping artifacts also shift the intensity values and hence present

difficulty in quantification of the reconstructed image data. They can

be reduced by hardening the beam prior to reaching the patient, using

a filter made of aluminum, copper, etc. Algorithmic approaches [BK04]

for reducing these artifacts have also been proposed.
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13.9.5 Metal Artifacts

Metal artifacts are caused by the presence of materials that have

a high attenuation coefficient when compared to pathology in the

human body. These include surgical clips, biopsy needles, tooth fillings,

implants, etc. Due to their high attenuation coefficient, metal artifacts

produce beam-hardening artifacts (Figure 13.20) and are characterized

by streaks emanating from the metal structures. Hence techniques used

for removing beam hardening can be used to reduce these artifacts.

In Figure 13.20, the top image is a slice taken at a location without

any metal in the beam. The bottom image contains an applicator. The

beam hardening causes a streaking artifact that not only renders the

metal poorly reconstructed but also adds streaks to nearby pixels and

hence makes diagnosis difficult.

Algorithmic approaches [Hsi03], [JS78], [WSOV96] to reducing

these artifacts have been proposed. A set of initial reconstructions

is performed without any metal artifact correction. From the recon-

structed image, the location of metal objects is then determined. These

objects are then removed from the projection image to obtain a syn-

thesized projection. The synthesized projection is then reconstructed

to obtain a reconstructed image without metal artifacts.

13.10 Summary

• A typical x-ray and CT system consists of an x-ray tube, detector

and a patient table.

• X-ray is generated by bombarding high-speed electrons on a tung-

sten target. A spectrum of x-ray is generated. There are two parts

to the spectrum: Bremsstrahlung or braking spectrum and the

characteristic spectrum.
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(a) Slice with no metal in the beam

(b) Beam hardening artifact with strong streaks ema-
nating from a metal applicator

FIGURE 13.20: Effect of metal artifact.

• The x-ray passes through a material and is attenuated. This is

governed by the Lambert-Beer law.

• The x-ray after passing through a material is detected using either

an ionizing detector or a scintillation detector such as the II or

FPD.

• X-ray systems can be either fluoroscopic or angiographic.

• A CT system consists of an x-ray tube and detector, that are

rotated around the patient to acquire multiple images. These

images are reconstructed to obtain the slice through a patient.
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• The central slice theorem is an analytical technique for recon-

structing images. Based on this theorem, it can be proven that

the reconstruction process consists of filtering and then back-

projection.

• The Hounsfield unit is the unit of measure in CT. The unit is a

map of the attenuation coefficient of the material.

• CT systems suffer from various artifacts such as misalignment

artifact, scatter artifact, beam hardening artifact, and metal arti-

fact.

13.11 Exercises

1. Describe briefly the various parameters that control the quality

of x-ray or CT images.

2. An x-ray tube has an acceleration potential of 50kVp. What is

the wavelength of the x-ray?

3. Describe the difference in the detection mechanism between II and

FPD. Specifically describe the advantages and disadvantages.

4. Allan M. Cormack and Godfrey N. Hounsfield won the 1979 Nobel

Prize for creation of CT. Read their Nobel acceptance speech and

understand the improvement in contrast and spatial resolution of

the images described compared to current clinical images.

5. What is the HU value of a material whose linear attenuation

coefficient is half of the linear attenuation coefficient of water?

6. A metal artifact causes significant distortion of an image both in

structure and HU value. Using the list of papers in the references,

summarize the various methods.
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Chapter 14

Magnetic Resonance Imaging

14.1 Introduction

Magnetic Resonance Imaging (MRI) is built on the same physi-

cal principle as Nuclear Magnetic Resonance (NMR), which was first

described by Dr. Isidor Rabi in 1938 and for which he was awarded

the Nobel Prize in Physics in 1944. In 1952, Felix Bloch and Edward

Purcell won the Nobel Prize in Physics for demonstrating the use of

the NMR technique in various materials.

It took a few more decades to apply the NMR principle to imaging

the human body. Paul Lauterbur developed the first MRI machine that

generated 2D images. Peter Mansfield expanded on Paul Lauterbur’s

work and developed mathematical techniques that are still part of MRI

image creation. For their work, Peter Mansfield and Paul Lauterbur

were awarded the Nobel Prize in Physics in 2003.

MRI has developed over the years as one of the most commonly

used diagnostic tools by physicians all over the world. It is also popular

due to the fact that it does not use ionizing radiation. It is superior to

CT for imaging tissue, due to its better tissue contrast.

Unlike the physics and workings of CT, MRI physics is more

involved and hence this chapter is arranged differently than the CT

chapter. In the x-ray and CT chapter, we began with the construction

and generation of x-ray, then discussed the material properties that

govern x-ray imaging, and finally discussed x-ray detection and image

formation. However, in this chapter we begin the discussion with the

315
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various laws that govern NMR and MRI. This includes Faraday’s law of

electromagnetic induction, Larmor frequency, and the Bloch equation.

This is followed by material properties such as T1 and T2 relaxation

times and the gyromagnetic ratio and proton density that govern MRI

imaging. This is followed by sections on NMR detection and finally MRI

imaging. With all the physics understood, we discuss the construction

of an MRI machine. We conclude with the various modes and poten-

tial artifacts in MRI imaging. Interested readers can find more details in

[Bus88],[CDM84a],[DKJ06],[Hor95], [Mac83],[MW98],[McR03],[Spl10],

[Wes09].

14.2 Laws Governing NMR and MRI

14.2.1 Faraday’s Law

Faraday’s law is the basic principle behind electric motors and gen-

erators. It is also part of today’s electric and electric-hybrid cars. It

was discovered by Michael Faraday in 1831 and was correctly theo-

rized by James Clerk Maxwell. It states that current is induced in a

coil at a rate at which the magnetic flux changes. In Figure 14.1, when

the magnet is moved in and out of the coil in the direction shown,

a current is induced in the coil in the direction shown. This is useful

for electrical power generation, where the flux of the magnetic field is

achieved by rotating a powerful magnet inside the coil. The power for

the motion is obtained using mechanical means such as potential energy

of water (hydroelectric), chemical energy of diesel (diesel engine power

plants), etc.

The converse is also true. When a current is passed through a closed

circuit coil, it will cause the magnet to move. By constricting the motion

of the magnet to rotation, an electric motor can be created. By suitably

wiring the coils, an electric generator can thus become an electric motor.
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In the former, the magnet is rotated to induce current in the coil while

in the latter, a current passed through the coil rotates the magnet.

MRI and NMR use electric coils for excitation and detection. During

the excitation phase, the current in the coil will induce a magnetic field

that causes the atoms to align in the direction of the magnetic field.

During the detection phase, the change in the magnetic field is detected

by measuring the induced current.

FIGURE 14.1: Illustration of Faraday’s law.

14.2.2 Larmor Frequency

An atom (although a quantum-level object) can be described as a

spinning top. Such a top will be precessing about its axis at an angle as

shown in Figure 14.2. The frequency of the precession is an important

factor and is described by the Larmor equation (Equation 14.1).

f = γB (14.1)

where γ is the gyromagnetic ratio, f is the Larmor frequency, and B is

the strength of the external magnetic field.
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FIGURE 14.2: Precessing of the nucleus in a magnetic field.

14.2.3 Bloch Equation

An atom in a magnetic field is aligned in the direction of the field.

An RF pulse (to be introduced later) can be applied to change the ori-

entation of the atom. If the magnetic field is pointing in the z-direction,

the atom will be aligned in the z-direction. If a pulse of sufficient

strength is applied, the atom can be oriented in the x-direction or

y-direction or sometimes even in the z-direction, the direction opposite

to its original.

If the RF pulse is removed, the atom returns to its original z-

direction. During the process of moving from the xy-direction to the

z-direction, the atom traces a spiral motion, described by the Bloch

equations (Equation 14.2).

Mx = e
− t

T2 cosωt

My = e
− t

T2 sinωt

Mz = M0(1− e−
t

T1 ) (14.2)
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The equations can be easily visualized by plotting them in 3D (Fig-

ure 14.3). At time t = 0, the value of Mz is zero. This is due to the fact

that the atoms are oriented in the xy-plane and hence their net mag-

netization is also in the xy-plane and not in the z-direction. When the

RF pulse is removed, the atoms begin to orient in the z-direction (their

original direction before RF pulse). This change along the xy-plane is

an exponential decay in amplitude change and sinusoidal in directional

change. Thus, the net magnetization reduces over time exponentially

while sinusoidally changing direction in the xy-plane. At t = infinity,

the Mx and My reach 0 while Mz reaches the original value of M0.

Since a patient cannot be imaged for an infinite amount of time, in

real applications, the atom will never recover its original magnetization

completely.

FIGURE 14.3: Bloch equation as a 3D plot.

14.3 Material Properties

14.3.1 Gyromagnetic Ratio

The gyromagnetic ratio of a particle is the ratio of its magnetic

dipole moment to its angular momentum. It is a constant for a given

nuclei. The values of the gyromagnetic ratio for various nuclei are given

in Table 14.1. When an object containing multiple materials (and hence
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TABLE 14.1: An abbreviated list of the nuclei of interest to NMR and
MRI imaging and their gyromagnetic ratios.

Nuclei γ (MHz/T)
H1 42.58
P 31 17.25
Na23 11.27
C13 10.71

different nuclei) is placed in a magnetic field of certain strength, the pre-

cessional frequency is directly proportional to the gyromagnetic ratios

based on the Larmor equation. Hence, if we measure the precessional

frequency, we can distinguish the various materials. For example, the

gyromagnetic ratio is 42.58 MHz/T for a hydrogen nucleus while it is

10.71 MHz/T for a carbon nucleus. For a typical clinical MRI machine,

the magnetic field strength (B) is 1.5T. Hence the precessional fre-

quency of a hydrogen atom is 63.87 MHz and that of the carbon is

16.07 MHz.

14.3.2 Proton Density

The second material property that is imaged is the proton density

or spin density. It is the number of “mobile” hydrogen nuclei in a given

volume of the sample. The higher the proton density, the larger the

response of the sample in NMR or MRI imaging.

The response to NMR and MRI is not only dependent on the den-

sity of the hydrogen nucleus but also its configuration. A hydrogen

nucleus connected to oxygen responds differently compared to the one

connected to a carbon atom. Also, a tightly bound hydrogen atom does

not produce any noticeable signal. The signal is generally produced by

an unbound or free hydrogen nucleus. Thus, the hydrogen atom in tis-

sue that is loosely bound produces a stronger signal. Bone on the other

hand has hydrogen atoms that are strongly bound and hence produce

a weaker signal.
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TABLE 14.2: List of biological materials and their proton or spin
density.

Biological material Proton or spin density
Fat 98

Grey matter 94
White matter 100

Bone 1-10
Air < 1

Table 14.2 lists the proton density of common materials. It can be

seen from the table that the proton density for bone is low compared

to white matter. Thus, the bone responds poorly to the MRI signal.

One exception in the table is the response of fat to the MRI signal.

Although fat consists of a large number of protons, it responds poorly

to the MRI signal. This is due to the long chain of molecules found in

fat that immobilize hydrogen atoms.

14.3.3 T1 and T2 Relaxation Times

There are two relaxation times that characterize the various regions

in an object and can help distinguish them in an MRI image. They

characterize the response of an atom in the Bloch equation.

Consider the image shown in Figure 14.4. A strong magnetic field B0

is applied in the direction of the z-axis. This causes a net magnetization

of M0 in the z-axis to increase from zero. The increase is initially rapid

but then slows down. It is given by Equation 14.3 and graphically

represented by Figure 14.5.

Mz = M0(1− e−
t

T1 ) (14.3)

The time for the net magnetization to reach a value within e (i.e.,

M0−Mz = M0

e ) is called the T1 relaxation time. Since T1 deals with both

magnetization and demagnetization along the longitudinal direction (z-

axis), T1 is also referred to as longitudinal relaxation time.
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FIGURE 14.4: T1 magnetization.

FIGURE 14.5: Plot of T1 magnetization.

During an MRI image acquisition, in addition to the external mag-

netic field, an RF pulse is applied. This RF pulse disturbs the equi-

librium and reduces Mz. The protons are not in isolation from other

atoms but instead are bound tightly by a lattice. When the RF pulse

is removed, the protons return to equilibrium, which causes a decrease

in Mxy or transverse magnetization. This is accomplished by trans-

ferring energy to other atoms and molecules in the lattice. The time

constant for the magnetization decay in the xy-axis is called T2 or the
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TABLE 14.3: List of biological materials and their T1 and T2 values
for field strength of 1.0 T.

Biological material T1 (ms) T2 (ms)
Cerebrospinal fluid 2160 160

Grey matter 810 100
White matter 680 90

Fat 240 80

spin-lattice relaxation time. It is governed by Equation 14.4 and is

graphically represented by Figure 14.6.

Mxy = Mxy0e
− t

T2 (14.4)

FIGURE 14.6: Plot of T2 de-magnetization.

T1 and T2 are independent of each other but T2 is generally smaller

than or equal to T1. This is evident from Table 14.3, which lists T1 and

T2 values for some common biological materials. The value of T1 and

T2 are dependent on the strength of the external magnetic field (1.0T

in this case).
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14.4 NMR Signal Detection

As discussed earlier, the presence of a strong magnetic field aligns

the proton in the object in the direction of the magnetic field. The most

interesting phenomenon happens when an RF pulse is applied to the

object in the presence of the main magnetic field.

Due to the strong magnetic field (B0), the protons align themselves

with it. They also precess at the Larmor frequency. This is the equilib-

rium state of the proton under the magnetic field. When an RF pulse is

applied using the transmitting coil to the cartoon head (Figure 14.7),

the proton orientation changes and in some cases it flips in the negative

direction while precessing at the Larmor frequency. Due to the flip, the

net magnetization is in the direction opposite to the direction of the

main magnetic field. When the RF pulse is removed, the protons flip

back to the positive direction and hence reach their equilibrium state.

During this process, an electric current is induced in the receiving coil

due to changing magnetic field. This based on Faraday’s law which

was discussed previously. The signal obtained in the receiving coil is

shown in Figure 14.8. The signal reduces in its intensity over time due

to free induction decay (FID) and the time for the protons to reach

their equilibrium state, or the “relaxed” state, is called the “relaxation

time.”

The signal is a plot over time. This signal contains details of the

frequencies of various protons in the object. The frequency distribution

can be obtained by using Fourier transform.

14.5 MRI Signal Detection or MRI Imaging

In this section, we will learn methods for obtaining images using

MRI. The actual imaging process begins with selection of a section of
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FIGURE 14.7: Net magnetization and effect of RF pulse.

FIGURE 14.8: Free induction decay.

the object being imaged and placing that section under a magnetic field

in a process called slice selection. An MRI signal can only be achieved

by changing the orientation of the proton under the magnetic field.

This is achieved by applying an RF pulse in the other two orthogonal

directions during phase and frequency encoding. All these activities
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need to be timed so that an MRI image can be obtained. This timing

process is called the pulse sequence. We will discuss each of these in

detail in the subsequent sections.

14.5.1 Slice Selection

Slice selection is achieved by applying the magnetic field shown

in figure 14.5.1 on an object along one of the orthogonal directions in

generally the z-direction or axial direction. Application of the magnetic

field causes the protons in that section to orient themselves in the

direction of the magnetic field and limits the imaging to this section.

The slices that are not under the magnetic field are oriented randomly

and hence will not be affected by the subsequent application of the

magnetic field or RF pulses.

FIGURE 14.9: Slice selection gradient.

14.5.2 Phase Encoding

Phase encoding gradient is generally applied in the x-, y- or z-

direction. Due to the application of slice selection gradient, the various

protons are oriented in the z-direction (say). They will be spinning in

phase with each other. By applying a gradient along the y-direction

(say), the protons along a given y-location will spin with the same
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phase and the other y-locations will spin out of phase. Since every y-

location can be identified using its phase, it can be concluded that the

protons are encoded with reference to phase. The same argument can

be extended if the phase encoding gradient is in the x-direction. If the

MRI image has N pixel locations, the phase encoding gradient is chosen

such that the phase shift between adjacent pixels is given by Equation

14.5. This ensures that two coordinates do not share the same phase.

φ =
360

Number of pixels along x or y
(14.5)

14.5.3 Frequency Encoding

Frequency encoding gradient is applied in the x-, y- or z- direction.

After the application of phase encoding gradient along the y-direction,

all the protons along a given y-location will be precessing at the same

phase. When a frequency encoding gradient is applied along the x-

direction, protons for a given x-location will receive the same magnetic

field. Hence these protons will precess at the same frequency. Thus,

with the application of both phase and frequency encoding

gradient, every x-, y- point in the object will have a unique

phase and frequency.

14.6 MRI Construction

A simple model (Figures 14.10 and 14.11) of an MRI will consist of:

• Main magnet

• Gradient magnet

• Radio-frequency coils

• Computer for processing the signal
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FIGURE 14.10: Closed magnet MRI machine. Original image reprinted
with permission from Siemens AG.

14.6.1 Main Magnet

The main magnet generates a strong magnetic field. A typical MRI

machine used for medical diagnosis is around 1.5T, which is 30,000

times stronger than the earth’s magnetic field.

The magnets could be permanent magnets, electromagnets or super-

conducting magnets. An important criterion for choosing a magnet is

its ability to produce a uniform magnetic field. Permanent magnets are

cheaper but the magnetic field is not uniform. Electromagnets can be

manufactured to close tolerance, so that the magnetic field is uniform.

They generate a lot of heat, which limits the magnetic field strength.

Superconducting magnets are electromagnets that are cooled by super-

conducting fluids such as liquid nitrogen or helium. These magnets

have a homogeneous magnetic field and high field strength but they

are expensive to operate.
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FIGURE 14.11: Open magnet MRI machine. Original image reprinted
with permission from Siemens AG.

14.6.2 Gradient Magnet

As described earlier, a uniform magnetic field cannot localize the

various parts of the object. Hence gradient magnetic fields are used.

Based on Faraday’s law, a magnetic field can be generated by the appli-

cation of current to a coil, also known as gradient coils. Since gradient

needs to be generated in all three directions, gradient coils are config-

ured to generate fields in all three directions.

14.6.3 RF Coils

An RF coil is composed of loops of conducting materials such as

copper. It generates a magnetic field with the passage of current. This

process is called transmitting signal. Similarly, a rapidly changing mag-

netic field generates current in the coil which can be measured. This

is accomplished using a receiving coil. In some cases, the same coil

can transmit and receive signals. Such coils are called transceivers.
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An example of a brain imaging coil is shown in Figure 14.12. Specialized

coils are created for different parts being imaged.

FIGURE 14.12: Head coil. Original image reprinted with permission
from Siemens AG.

14.6.4 K-Space Imaging

In Section 14.4, we discussed that the protons regain their orien-

tation after the removal of the RF pulse. During this process, an FID

signal (Figure 14.8) is induced in the coil. The FID signal is a plot over

time of the change in the net-magnetization in the transverse plane.

This signal contains various frequencies that can be obtained using

Fourier transformation (Chapter 7). This signal is a 1D signal, as the

originating signal is also 1D.

In Section 14.5, we also discussed that the three magnetic field gra-

dients allow signal localization. The three magnetic fields are applied,

and the signal obtained for each condition is read out. This 1D sig-

nal fills one horizontal line in the frequency space (Figure 14.13). By

repeating the signal generation process for all conditions, the various

horizontal lines can be filled.
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FIGURE 14.13: k-space image.

It can be proven that the image acquired in Figure 14.13 is the

Fourier transform of the MRI image. A simple inverse Fourier trans-

form can be used to obtain the MRI image (Figure 14.14). Figure

14.14(a) is the image obtained by filling the k-space and Figure 14.14(b)

is obtained using the inverse Fourier transform of the first image.

14.7 T1, T2 and Proton Density Image

A typical MRI image consists of T1, T2 and proton density weighted

components. It is possible to obtain pure T1, T2 and a proton density

weighted image but it is generally time consuming. Such images are

used for discussion to emphasize the role each of these components

plays in MRI imaging.
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(a) Image obtained by filling the
k-space.

(b) Inverse Fourier transform of k-
space image.

FIGURE 14.14: k-space reconstruction of MRI images.

Figure 14.15(a) is a T1 weighted image (i.e., the pixel values are

dependent on the T1 relaxation time). Similarly, Figure 14.15(b) and

Figure 14.15(c) are T2 and proton density weighted images respectively.

Bright pixels in a T1 weighted image correspond to fat, while the

same pixels appear darker in a T2 weighted image and vice versa. A

proton density image is useful in identifying the pathology of the object.
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(a) T1 weighted
image.

(b) T2 weighted
image.

(c) Proton density
weighted image.

FIGURE 14.15: T1, T2 and proton density image. Courtesy of the
Visible Human Project.

14.8 MRI Modes or Pulse Sequence

So far, we have learned about the various controls such as gradient

magnitude along the three axes and the RF pulse that tilts the orienta-

tion of the protons. In this section, we will combine these four controls

to produce images that are medically and scientifically useful. This pro-

cess consists of performing different operations at different times and is

generally shown using a pulse sequence diagram. In this diagram, each

control receives its own row of operation. The time progresses to the

right of each row. Some of these pulse sequences are discussed below.

In each case, a certain set of operations or sequences is repeated at

regular intervals called the repetition time or TR. TE is defined as the

time between the start of the first RF pulse and the time to reach the

peak of the echo (or output signal).

14.8.1 Spin Echo Imaging

The spin echo pulse sequence (Figure 14.16) is one of the simplest

and most commonly used pulse sequences. It consists of a 90-degree
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pulse followed by 180-degree pulse at TE/2. During both the pulses,

the gradient magnitude along the z-axis is kept on. An echo is pro-

duced at time TE while the gradient along the x-axis is kept on so that

localization information can be obtained. This process is repeated after

every time to repeat (TR). The last 90-degree pulse in the figure is the

start of the next sequence.

FIGURE 14.16: Spin echo pulse sequence.

14.8.2 Inversion Recovery

The inversion recovery pulse sequence (Figure 14.17) is similar to

the spin echo sequence except for a 180-degree pulse applied before the

90-degree pulse.

The 180-degree pulse causes the net-magnetization vector to be

inverted along the z-axis. Since the inversion cannot be measured in

planes other than xy-plane, a 90-degree pulse is applied. The time

between the two pulses is called the inversion time or TI. The gra-

dient magnetic field along the z-axis is kept on during both pulses. The
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gradient is applied while reading the echo, so that the localization infor-

mation can be obtained. This process is repeated at regular intervals

of TR. The last 180-degree pulse in the figure is the start of the next

sequence.

FIGURE 14.17: Inversion recovery pulse sequence.

14.8.3 Gradient Echo Imaging

Gradient echo imaging pulse sequence (Figure 14.18) consists of

only one pulse of 90-degree and is one of the simplest pulse sequences.

The flip angle could be any angle and 90-degree was chosen as one

example. The slice selection gradient is kept on during the application

of the 90-degree pulse. At the end of the pulse, a gradient magnetic

field is applied along the y-axis. A negative gradient is applied along

the x-axis at the same time. The x-axis gradient is then switched to

positive gradient while the echo is read. Since there are fewer pulses

and the gradient are switched on at consecutive intervals, it is one of

the fastest imaging techniques. The last 90-degree pulse in the figure is

the start of the next sequence.
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FIGURE 14.18: Gradient echo pulse sequence.

TABLE 14.4: TR and TE settings for various weighted images.

Weighted image TR TE
T1 Short Short
T2 Long Long

Proton density Long Short

By using various settings for TR and TE, it is possible to obtain

images that are weighted for T1, T2 and proton density. A list of such

parameters is shown in Table 14.4.

14.9 MRI Artifacts

Image formation in MRI is complex with interaction of various

parameters such as homogeneity of the magnetic field, homogeneity of

the applied RF signal, shielding of the MRI machine, presence of metal
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that can alter the magnetic field, etc. Any deviation from ideal conditions

will result in an artifact that could either change the shape or the pixel

intensity in the image. Some of these artifacts are easily identifiable. For

example, a metal artifact leaves identifiable streaks or distortions. A few

other artifacts are not easily identifiable. An example of an artifact that

is not easily identifiable is the partial volume artifact.

These artifacts can be removed by creating close to ideal condi-

tions. For example, to ensure that there are no metal artifacts, it is

important that the patient does not have any implanted metal objects.

Alternately, a different imaging modality such as CT or a modified form

of MRI imaging can be used.

Artifacts are generally classified into two categories: patient related

and machine related. The motion artifact and metal artifact are patient

related while inhomogeneity and partial volume artifacts are machine

related. An image may contain artifacts from both categories. There

are many other artifacts. Interested readers must check the references

in Section 14.1.

14.9.1 Motion Artifact

A motion artifact can be due to either motion of the patient or

the motion of the organs in a patient. The organ motions occur due

to cardiac cycle, blood flow, and breathing. In MRI facilities with poor

shielding or design, moving large ferromagnetic objects such as auto-

mobiles, elevators, etc., can cause inhomogeneity in the magnetic field

that in turn can cause motion artifacts.

Motion due to the cardiac cycle can be controlled by gating, a

process of timing the image acquisition with the heart cycle. In some

cases, simple breath holding can be used to compensate for the motion

artifact.

Figure 14.19 is an example of a slice reconstructed with and without

a motion artifact. The motion artifact in Figure 14.19(b) has resulted in

significant degradation of the image quality, making clinical diagnosis

difficult.
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(a) Slice with no motion artifact

(b) Slice with motion artifact

FIGURE 14.19: Effect of motion artifact on MRI reconstruction. Orig-
inal images reprinted with permission from Dr. Essa Yacoub, University
of Minnesota.
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14.9.2 Metal Artifact

Ferromagnetic materials such as iron strongly affect the magnetic

field, causing inhomogeneity. In Figure 14.20, the arrows in the two

images indicate the direction of the magnetic field. In the left image,

the magnetic field surrounds a non-metallic object such as tissue. The

presence of the tissue does not change the homogeneity of the magnetic

field. In the right image, a metal object is placed in the magnetic field.

The magnetic field is distorted close to the object.

FIGURE 14.20: Metal artifact formation.

The reconstruction process assumes that the field is homogeneous.

Thus, it assumes that all points with the same magnetic field strength

will have the same Larmor frequency. This variation from ideality

causes metal artifact.

The effect is more profound in the case of ferromagnetic materials

such as iron, stainless steel, etc. It is less profound in metals such as

titanium and other alloys. If MRI is the preferred modality for imaging

a patient with metal implants, a low field-strength magnet can be used.

14.9.3 Inhomogeneity Artifact

This artifact is similar in principle to the metal artifact. In the

case of metal artifact, the inhomogeneity is caused by the presence of

metallic objects. In the case of the inhomogeneity artifact, the magnetic
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field is not uniform due to a defect in the design or manufacture of the

magnet.

The artifact can occur due to the main magnetic field (B0) or due to

gradient magnetic field. In some cases, the main magnetic field may not

be uniform across the patient and will change from center to periphery.

The artifact results in distortion depending on the variation of mag-

netic field across the patient. If the variations are minimal, the shading

artifact results.

14.9.4 Partial Volume Artifact

This artifact is caused by imaging using large voxel size, causing

two nearby object intensities or pixel intensities to be averaged. This

artifact generally affects long and thin objects as their intensity changes

rapidly in the direction perpendicular to their long axis.

The artifact can be reduced by increasing the spatial resolution,

which results in an increased number of voxels in the image and conse-

quently longer acquisition time.

14.10 Summary

• MRI is a non-radiative high-resolution imaging technique.

• It works on Faraday’s law, Larmor frequency, and Bloch equation.

• It is based on physical principles such as T1 and T2 relaxation

time, proton density, and gyromagnetic ratio.

• Atoms in a magnetic field are aligned in the direction of the mag-

netic field. An RF pulse can be applied to change their orienta-

tion. When the RF pulse is removed, the atoms reorient, and the

current generated by this process can be measured. This is the

basic principle of NMR.
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• In MRI, the basic principle of NMR is used along with slice selec-

tion, phase encoding, and frequency encoding gradient to localize

the atoms.

• An MRI machine consists of a main magnet, gradient magnets,

an RF coil, and a computer for processing.

• The various parameters that control MRI image acquisition are

diagrammatically represented as a pulse sequence diagram.

• MRI suffers from various artifacts. These artifacts can be classi-

fied as either patient related or machine related.

14.11 Exercises

1. Calculate the Larmor frequency for all atoms listed in Table 14.1.

2. Explain the plot in Figure 14.3 using Equation 14.2.

3. If the plot in Figure 14.3 is viewed looking down in the z direction,

the magnetic field path will appear as a circle. Why?

Solution: The values of Mx andMy have cos and sin dependencies,

similar to the parametric form of a circle.

4. Explain why T2 is generally smaller than or equal to T1.

5. Before k-space imaging was used, image reconstruction was

achieved using a back-projection technique similar to CT. Write

a report about this technique.

6. We discussed a few of the artifacts seen in MRI images. Identify

two more artifacts and list their causes, symptoms and method

to overcome these artifacts.

7. MRI is generally safe compared to CT. Yet it is important to take

precautions during MRI imaging. List some of these precautions.
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Chapter 15

Light Microscopes

15.1 Introduction

The modern light microscope was created in the 17th century,

but the origin of its important component, the lens, dates back more

than three thousand years. The ancient Greeks used lenses as burn-

ing glasses, by focusing the sun’s rays. In later years, lenses were used

to create glasses in Europe in order to correct vision problems. The

scientific use of lenses can be dated back to the 16th century with the

creation of compound microscopes. Robert Hooke, an English physicist,

was the first person to describe cells using a microscope. Antonie van

Leeuwenhoek, a Dutch physicist, improved on the lens design and made

many important discoveries. For all his research efforts, he is referred

to as “the father of microscopy.”

We begin this chapter with an introduction to the various physi-

cal principles that govern image formation in light microscopy. These

include geometric optics, diffraction limit of the resolution, the objec-

tive lens, and the numerical aperture. The aim of a microscope is

to magnify an object while maintaining good resolving power (i.e.,

the ability to distinguish two objects that are nearby). The diffrac-

tion limit, the objective lens, and the numerical aperture determine

the resolving power of a microscope. We apply these principles dur-

ing the discussion on design of a simple wide-field microscope. This

is followed by the fluorescence microscope that not only images the

structure but also encodes the functions of the various parts of the

343
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specimen. We then discuss confocal and Nipkow disk microscopes that

offer better contrast resolution compared to wide-field microscopes. We

conclude with a discussion on choosing a wide-field or confocal micro-

scope for a given imaging task. Interested readers can refer to [Bir11],

[Dim12],[HL93],[Mer10],[RDLF05],[Spl10] for more details.

15.2 Physical Principles

15.2.1 Geometric Optics

A simple light microscope of today is shown in Figure 15.1. It con-

sists of an eyepiece, an objective lens, the specimen to be viewed and a

light source. As the name indicates, the eyepiece is the lens for viewing

the sample. The objective is the lens closest to the sample. The eyepiece

and the objective lens are typically compound convex lenses. With the

introduction of digital technology, the viewer does not necessarily look

at the sample through the eyepiece but instead a camera acquires and

stores the image.

The lenses used in a microscope have magnification that allows

objects to appear larger than their original size. Thus, the magnifi-

cation for the objective can be defined as the ratio of the height of the

image formed to the height of the object. Applying triangular inequal-

ity (Figure 15.2), we can also obtain the magnification, m, as the ratio

of d1 to d0.

m =
h1

h0
=
d1

d0
(15.1)

A similar magnification factor can be obtained for the eyepiece as

well. The total magnification of the microscope can be obtained as the

product of the two magnifications.

M = mobjective ∗meyepiece (15.2)
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(a) A schematic of the light microscope

(b) The light microscope. Original image
reprinted with permission from Carl Zeiss
Microscopy, LLC.

FIGURE 15.1: Light microscope.

15.2.2 Numerical Aperture

Numerical aperture defines both the resolution and the photon-

collecting capacity of a lens. It is defined as:

NA = n sin θ (15.3)
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FIGURE 15.2: Schematic of the light microscope.

where θ is the angular aperture or the acceptance angle of the aperture

and n is the refractive index.

For high-resolution imaging, it is critical (as will be discussed later)

to use an objective with a high numerical aperture. Figure 15.3 is a

photograph of an objective with all the parameters embossed. In this

example, 20X is the magnification and 0.40 is the numerical aperture.

15.2.3 Diffraction Limit

Resolution is an important characteristic of an imaging system. It

defines the smallest detail that can be resolved (or viewed) using an

optical system like the microscope. The limiting resolution is called the

diffraction limit. We know that electromagnetic radiations have both

particle and wave natures. The diffraction limit is due to the wave

nature. The Huygens-Fresnel principle suggests that an aperture such

as a lens creates secondary wave sources from an incident plane wave.

These secondary sources create an interference pattern and produce the

Airy disk.
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FIGURE 15.3: Markings on the objective lens. Original image
reprinted with permission from Carl Zeiss Microscopy, LLC.

Based on the diffraction principles, we can derive the resolving

power of a lens. It is the minimum distance between two adjacent points

that can be distinguished through a lens. It is defined as:

RP =
0.61λ

NA
(15.4)

If a microscope system consists of both objective and eyepiece, then

the formula has to be modified to:

RP =
1.22λ

(NAobj +NAeye)
(15.5)

where NAobj and NAeye are the numerical apertures of the objective

and eyepiece respectively.

The aim of any optical imaging system is to improve the resolving

power or reduce the value of RP. This can be achieved by decreasing the

wavelength, increasing the aperture angle, or increasing the refractive
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index. Since this discussion is on the optical microscope, we are limited

to the visible wavelength of light. X-rays, gamma rays, etc., have shorter

wavelengths compared to visible light and hence better resolving power.

The refractive index (discussed later) of air is 1.00. The refractive index

of mediums used in microscopy imaging is generally greater than 1.00

and hence improves resolving power.

Two points separated by large distances will have distinct Airy disks

and hence can be easily identified by an observer. If the points are close

(middle image in Figure 15.4), the two Airy disks begin to overlap. If

the distance between points is further reduced (left image in Figure

15.4), they begin to further overlap. The two peaks approach and the

limit at which the human eye cannot separate the two points is referred

to as the Rayleigh Criterion.

FIGURE 15.4: Rayleigh Criterion.

15.2.4 Objective Lens

In the setup shown in Figure 15.1, the two sources of magnification

are the objective lens and eyepiece. Since the objective is the closest to

the specimen, it is the largest contributor of magnification. Thus, it is

critical to understand the inner workings of the objective lens and also

the various choices.

We begin the discussion with the refractive index. It is a dimen-

sionless number that describes how electromagnetic radiation passes

through various mediums. The refractive index can be seen in vari-

ous phenomena such as rainbows, separation of visible light by prisms,
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TABLE 15.1: List of the commonly used media and their refractive
indexes.

Medium Refractive Index
Air 1.0

Water 1.3
Glycerol 1.44

Immersion oil 1.52

etc. The refractive index of the lens is different from that of the spec-

imen. This difference in refractive index causes the deflection of light.

The refractive index between the objective lens and the specimen can

be matched by submerging the specimen in a fluid (generally called

medium) with the refractive index close to the lens.

Table 15.1 shows commonly used media and their refractive indexes.

Failure to match the refractive index will result in loss of signal, contrast

and resolving power.

To summarize, the objective lens selection is based on the following

parameters:

1. refractive index of the medium,

2. magnification needed,

3. resolution, which in turn is determined by the choice of numerical

aperture.

15.2.5 Point Spread Function (PSF)

In Chapter 4, we discussed that Gaussian smoothing is used to

reduce noise in an image. The noise reduction is achieved by smearing

the pixel value at one location to all its neighbors. Any optical system

performs a similar operation with a kernel called a Point Spread Func-

tion (PSF). It is the response of an optical system to a point input

or point object as a consequence of diffraction. When a point source

of light is passed through a pinhole aperture, the resultant image on a
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focal plane is not a point, but instead the intensity is spread to multiple

neighboring pixels. In other words, the point image is blurred by the

PSF. The PSF is dependent on the numerical aperture of the lens. A

lens with a high numerical aperture produces a PSF of smaller width.

15.2.6 Wide-Field Microscopes

Light microscopes can be classified into different types depending

on the method used to acquire images, improve contrast, illuminate

samples etc. The microscope that we have described is called a wide-

field microscope. It suffers from poor spatial resolution (without any

computer processing), and poor contrast resolution due to the effect of

PSF.

15.3 Construction of a Wide-Field Microscope

A light microscope (Figure 15.1) is designed to magnify the image

of a sample using multiple lenses. It consists of the following:

1. Eyepiece

2. Objective

3. Light source

4. Condenser lens

5. Specimen stage

6. Focus knobs

The eyepiece is the lens closest to the eye. Modern versions of the

eyepiece are compound lenses in order to compensate for aberrations.
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It is interchangeable and can be replaced by eyepieces of different mag-

nification depending on the nature of object being imaged.

The objective is the lens closest to the object. These are gener-

ally compound lenses in order to compensate for aberrations. They are

characterized by three parameters: magnification, numerical aperture

and the refractive index of the immersion medium. The objectives are

interchangeable and hence modern microscopes also contain a turret

that contains multiple objectives to enable easier and faster switch-

ing between different lenses. The objective might be immersed in oil

to match the refractive index and increase the numerical aperture and

consequently increase the resolving power.

The light source is at the bottom of the microscope. It can be tuned

to adjust the brightness in the image. If the lighting is poor, the contrast

of the resultant image will be poor, while excess light might saturate

the camera recording the image. The most commonly used illumination

method is Köhler illumination, designed by August Köhler in 1893. The

previous methods suffered from non-uniform illumination, projection of

the light source on the imaging plane, etc. Köhler illumination elimi-

nates non-uniform illumination so that all parts of the light source con-

tribute to specimen illumination. It works by ensuring that the lamp

image is not projected on the sample plane with the use of a collector

lens placed near the lamp. This lens focuses the image of the lamp to

the condenser lens. Under this condition, illumination of the specimen

is uniform.

The specimen stage is used for placing the specimen under exami-

nation. The stage can be adjusted to move along its two axes, so that

a large specimen can be imaged. Depending on the features of a micro-

scope, the stage could be manual or motor controlled.

Focus knobs allow moving the stage or objective in the vertical axis.

This allows focusing of the specimen and also enables imaging of large

objects.
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15.4 Epi-Illumination

In the microscope setup shown in Figure 15.1, the specimen is illu-

minated by using a light source placed below. This is called trans-

illumination. This method does not separate the emission and excita-

tion light in fluorescence microscopy. An alternate method called epi-

illumination is used in modern microscopes.

In this method (Figure 15.7), the light source is placed above the

specimen. The dichroic mirror reflects the excitation light and illumi-

nates the specimen. The emitted light (which is of longer wavelength)

travels through the dichroic mirror and is either viewed or detected

using a camera. Since there are two clearly defined paths for emission

and excitation light, only the emitted light is used in the formation of

the image and hence improves the quality of the image.

15.5 Fluorescence Microscope

A fluorescence microscope allows identification of various parts of

the specimen not only in terms of structure but also in terms of func-

tion. It allows tagging different parts of the specimen, so that it gen-

erates light of certain wavelengths and forms an image. This improves

the contrast in the image between various objects in a specimen.

15.5.1 Theory

Fluorescence is generally observed when a fluorescent molecule

absorbs light at a particular wavelength and emits light at a different

wavelength within a short interval. The molecule is generally referred

to as fluorochrome or dye, and the delay between absorption and emis-

sion is in the order of nanoseconds. This process is generally shown
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diagrammatically using the Jablonski diagram shown in Figure 15.5.

The figure should be read from bottom to top. The lower state is the

stable ground state, generally called the S0 state. A light or photon inci-

dent on the fluorochrome causes the molecule to reach an excited state

(S′1). A molecule in the excited state is not stable and hence returns

to its stable state after losing the energy both in the form of radiation

such as heat and also light of longer wavelength. This light is referred

to as the emitted light.

FIGURE 15.5: Jablonski diagram.

From Planck’s law that was discussed in Chapter 13, the energy of

light is inversely proportional to the wavelength. Thus, light of higher

energy will have shorter wavelength and vice versa. The incident photon

is a higher energy and hence shorter wavelength, while the emitted

light is of low energy and longer wavelength. The exact mechanisms of

emission and absorption are beyond the scope of this book and readers

are advised to consult books dedicated to fluorescence for details.

15.5.2 Properties of Fluorochromes

Two properties of fluorochromes, excitation wavelength and emis-

sion wavelength, were discussed in the previous section. Table 15.2

lists the excitation and emission wavelengths of commonly used flu-

orochromes. As can be seen in the table, the difference between exci-

tation and emission wavelengths, or the Stokes shift, is significantly
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TABLE 15.2: List of the fluorophores of interest to fluorescence
imaging.

Fluorochrome Peak Exci-
tation Wave-
length (nm)

Peak Emission
Wavelength
(nm)

Stokes Shift
(nm)

DAPI 358 460 102
FITC 490 520 30
Alexa Fluor
647

650 670 20

Lucifer Yellow
VS

430 536 106

different for different dyes. The larger the difference, the easier it is to

filter the signal between emission and excitation.

A third property, quantum yield, is another important characteristic

of a dye. It is defined as:

QY =
Number of emitted photons

Number of absorbed photons
(15.6)

Another important property that determines the amount of fluores-

cence generated is the absorption cross-section. The absorption cross-

section can be explained with the following analogy. If a bullet is fired

at a target, the ability to reach the target is better if the target is

large and if the target surface is oriented in the direction perpendicu-

lar to the direction of the bullet path. Similarly, the term absorption

cross-section defines the “effective” cross-section of the fluorophore and

hence the ability of the excitation light to produce fluorescence.

It is measured by exciting a sample of fluorophore of certain thick-

ness with excitation photons of a certain intensity and measuring the

intensity of the emitted light. The relationship between the two inten-

sities is given by Equation 15.7.

I = I0e
−σDδx (15.7)
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where I0 is the excitation photon intensity, I is the emitted photon

intensity, σ is the absorption cross-section of the fluorophore, D is the

density, and δx is the thickness of the fluorophore.

15.5.3 Filters

During fluorescence imaging, it is necessary to block all light that

is not emitted by the fluorochrome to ensure the best contrast in the

image and consequently better detection and image processing. In addi-

tion, the specimen does not necessarily contain only one type of fluo-

rochrome. Thus, to separate the image created by one fluorochrome

from the other, a filter that allows only light of a certain wavelength

corresponding to the different fluorochromes is needed.

The filters can be classified into three categories: lowpass, bandpass

and highpass. We discussed these as digital filters in Chapter 7 while

here we will discuss physical filters. The lowpass filter allows light of

shorter wavelength and blocks longer wavelengths. The highpass fil-

ter allows light of longer wavelength and blocks shorter wavelengths.

The bandpass filter allows light of a certain range of wavelengths. In

addition, fluorescence microscopy uses a special type of filter called a

dichroic mirror (Figure 15.7). Unlike the three filters discussed earlier,

in a dichroic mirror the incident light is at 45◦ to the filter. The mirror

reflects light of shorter wavelength and allows longer wavelengths to

pass through.

Multi-channel imaging is a mode where different types of fluo-

rochromes are used for imaging resulting in images with multiple chan-

nels. Such images are called multi-channel images. Each channel con-

tains an image corresponding to one fluorochrome. For example, if we

obtained an image of size 512-by-512, using two different fluorochromes,

the image would be of size 512-by-512-by-2. The two in the size corre-

sponds to the two channels. Generally most fluorescence images have

3 dimensions. Hence the volume in such cases would be 512-by-512-by-

200-by-2, where 200 is the number of slices or z-dimension. The actual

number may vary based on the imaging conditions.
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The choice of the fluorochrome is dependent on the following

parameters:

1. Excitation wavelength

2. Emission wavelength

3. Quantum yield

4. Photostability

Filters used in the microscope need to be chosen based on the flu-

orochrome being imaged.

15.6 Confocal Microscopes

Confocal microscopes overcome the issue of spatial resolution that

affects wide-field microscopes. A better resolution in confocal micro-

scopes is achieved by the following:

• A narrow beam of light illuminates a region of the specimen. This

eliminates collection of light by the reflection or fluorescence due

to a nearby region in the specimen.

• The emitted or reflected light arising from the specimen passes

through a narrow aperture. A light emanating from the direction

of the beam will pass through the aperture. Any light emanating

from nearby objects or any scattered light from various objects

in the specimen will not pass through the aperture. This process

eliminates all out-of-focus light and collects only light in the focal

plane.

The above process describes image formation at a single pixel. Since

an image of the complete specimen needs to be formed, the narrow
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beam of light needs to be scanned all across the specimen and the

emitted or reflected light needs to be collected to form a complete

image. The scanning process is similar to the raster scanning process

used in television. It can be operated using two methods. In the first

method devised by Marvin Minsky, the specimen is translated so that

all points can be scanned. This method is slow and also changes the

shape of the specimen suspended in liquids and is no longer used. The

second approach is to keep the specimen stationary while the light beam

is scanned across the specimen. This was made possible by advances in

optics and computer hardware and software, and is used in all modern

microscopes.

15.7 Nipkow Disk Microscopes

Paul Nipkow created and patented a method for converting an

image into an electrical signal in 1884. The method consisted of scan-

ning an image by using a spinning wheel containing holes placed in a

spiral pattern, as shown in Figure 15.6. The portion of the wheel that

does not contain the hole is darkened so that light does not pass through

it. By rotating the disk at constant speed, a light passing through the

hole scans all points in the specimen. This approach was later adapted

to microscopy. Figure 15.6 shows only one spiral with a smaller number

of holes while a commercially available disc will have a large number of

holes, to allow fast image acquisition.

A setup containing the disk along with the laser source, objective

lens, detector, and the specimen is shown in Figure 15.7, and Figure

15.8 is a photograph of a Nipkow disk microscope. In this figure, the

illuminating light floods a significant portion of the holes. The portion

that does not contain any holes reflects the light. The light that passes

through the holes reaches the specimen through the objective lens. The

reflected light, or the light emitted by fluorescence, passes through the



358 Image Processing and Acquisition using Python

FIGURE 15.6: Nipkow disk design.

objective and is reflected by the dichroic mirror. The detector forms an

image using the reflected light.

FIGURE 15.7: Nipkow disk setup.
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FIGURE 15.8: Photograph of Nipkow disk microscope. Original image
reprinted with permission from Carl Zeiss Microscopy, LLC.

Unlike a regular confocal microscope, the Nipkow disk microscope

is faster as neither the specimen nor the light beam needs to be raster

scanned. This enables rapid imaging of live cells.

15.8 Confocal or Wide-Field?

Confocal and wide-field microscopes each have their own advantages

and disadvantages. These factors need to be considered when making a

decision on what microscope to use for a given cost or type of specimen

or the analysis to be performed.

• Resolution: There are two different resolutions: xy and z direc-

tions. Confocal microscopes produce better resolution images

in both directions. Due to advances in computing and better
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software, wide-field images can be deconvolved [WSS01] to a good

resolution along x and y but not necessarily along the z direction.

• Photo bleaching: Images from a confocal microscope may be

photo-bleached, as the specimen is imaged over a longer time

period compared to a wide-field microscope.

• Noise: Wide-field microscopes generally produce images with less

noise due to blurring from the PSF.

• Acquisition rate: Since confocal images scan individual points, it

is generally slower compared to wide-field microscopes.

• Cost: As a wide-field microscope has fewer parts, it is less expen-

sive than confocal.

• Computer processing: Confocal images need not be processed

using deconvolution. Depending on the setup, deconvolution of

a wide-field image can produce images of comparable quality to

confocal images.

• Specimen composition: A wide-field microscope with deconvolu-

tion works well for a specimen with a small structure.

15.9 Summary

• The physical properties that govern optical microscope imaging

are magnification, diffraction limits, and numerical aperture. The

diffraction limit and numerical aperture determine the resolution

of the image.

• The specimen is immersed in a medium in order to match the

refractive index and to increase the resolution.
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• Wide-field and confocal are the two most commonly used micro-

scopes. In the former, a flood of light is used to illuminate the

specimen while in the latter, a pencil beam is used to scan the

specimen and the collected light passes through a confocal aper-

ture.

• The fluorescence microscope allows imaging of the shape and

function of the specimen. Fluorescence microscope images are

obtained after the specimen has been treated with a fluorophore.

• The specific range of wavelength emitted by the fluorophore is

measured by passing the light through a filter.

• To speed up confocal image acquisition, a Nipkow disk is used.

The disk consists of a series of holes placed on a spiral. The disk

is rotated and the position of the holes is designed to ensure that

complete 2D scanning of the specimen is achievable.

15.10 Exercises

1. If the objective has a magnification of 20X and the eyepiece has

a magnification of 10X, what is the total magnification?

2. A turret has three objectives: 20X, 40X and 50X. The eyepiece has

magnification of 10X. What is the highest magnification achiev-

able?

3. In the same turret setup, if a cell occupies 10% of the field of view

for an objective magnification of 20X, what would be the field of

view percentage for 40X?

4. Discuss a few methods to increase spatial resolution in an optical

microscope. What are the limits for each parameter?
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Chapter 16

Electron Microscopes

16.1 Introduction

The resolution of a light microscope discussed previously is directly

proportional to the wavelength. To improve the resolution, light with a

shorter wavelength should be used. Scientists began experimenting with

ultraviolet light, which has a shorter wavelength than visible light. Due

to the difficulty in generation and maintaining coherence, it was not

commercially successful.

Meanwhile, the French physicist Louis de Broglie proved a traveling

electron has both wave and particle duality similar to light. He was

awarded a Nobel Prize in 1929 for this work.

An electron wave with higher energy will have lower wavelength and

vice versa. Thus, improving the resolution would involve increasing the

energy. The wavelength of electrons is considerably shorter than that

of visible light and hence very high-resolution images can be obtained.

Visible light has a wavelength of 400–700 nm. Electrons, on the other

hand, have a wavelength of 0.0122 nm for an accelerating voltage of

10 kV.

Ernst Ruska and Max Knoll created the first electron microscope

(EM) with the ability to magnify objects 400 times. Upon further work,

Ruska improved its resolution beyond the resolution of optical micro-

scopes and hence made the EM an indispensable tool for microscopists.

The EM used today does not measure a single characteristic property,

363
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but rather measures multiple characteristics of the material. The one

common thing among all of them is the electron beam.

In Section 16.2, we discuss some of the physical principles that

need to be understood regarding the EM. We begin with a discus-

sion of the properties of the electron beam and its ability to pro-

duce images at high resolution. We introduce the interaction of elec-

trons with the matter and various particles and waves that are gen-

erated as a consequence. The fast-moving electron beam from the

electron gun passes through the material to be imaged. During its

transit through the material, the electron interacts with the atoms

in that material. We integrate the two basic principles and discuss

the construction of an EM. We also discuss specimen preparation

and general precautions when preparing the specimen. Interested read-

ers can refer to [BR98],[DR03],[HK93],[Gol03],[Haj99],[Hay00],[Key97],

[KB46],[Kuo07],[Sch89],[Spl10],[Wat97].

16.2 Physical Principles

The EM was made possible by many fundamental and practical

discoveries made over time. In this section, we discuss these discoveries

and place them in the context of creating an electron microscope.

EM process involves bombarding a specimen with a high-speed elec-

tron beam and recording the beam emanating from or transmitted

through the specimen. These high-speed electrons have to be focused to

a point in the specimen. In 1927, Hans Busch proved that an electron

beam can be focused on an inhomogeneous magnetic field just as light

can be focused using a lens. Four years later, Ernst Ruska and Max

Knoll confirmed this by constructing such a magnetic lens. This lens is

still a part of today’s EM design.

The second basic principle is the dual nature of the electron beam

proven by Louis de Broglie. The electron beam behaves as a wave and
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a particle just like visible light. Thus the electron beam has both wave-

length and mass.

16.2.1 Electron Beam

Louis de Broglie proved that electrons traveling at high speed have

both particle and wave characteristics. The wavelength of the beam

is given by Equation 16.4. Thus the faster the electrons travel, the

lower the wavelength of the beam. As we will discuss later, the lower

wavelength results in production of high-resolution images.

λ =
h

mv
(16.1)

where h is Planck’s constant and is equal to 6.626 10−34 Js, m is the

electron mass and is equal to m = 9.109 10−31 kg, and v is the velocity

of the particle.

We also know that the beam stores the energy in the form of kinetic

energy given by the following equation.

E =
mv2

2
= eV (16.2)

where e = 1.602 10−19 coulombs is the charge of the electron and V is

the acceleration voltage. In other words,

v =

√
2eV

m
(16.3)

Plug this equation into Equation 16.1 to obtain

λ =
h√

2meV
(16.4)

Since all the variables on the right-hand side of the equation are

constant except for the accelerating voltage V, we can simplify the

equation to

λ =
1.22√
V

nano-meter (16.5)
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where V is voltage measured in volts. Thus for an accelerating voltage

of 10 kV, the wavelength of the electron beam is 0.0122 nm.

Since the speed of the beam and the acceleration voltage are gen-

erally very high for electron microscopy, the wavelength computation

is dependent on the relativistic effect. For such cases, it can be shown

that the wavelength is

λ =
h√√√√2mEν

(
1 +

eV
2m
c2

) (16.6)

16.2.2 Interaction of Electron with Matter

In Chapter 13, “X-Ray and Computed Tomography” we dis-

cussed the interaction of x-rays with materials. We discussed the

Bremsstrahlung spectrum (braking spectrum) and the characteristic

spectrum. The former is created as the incident x-ray is slowed by its

passage through the material. The latter is formed when the x-rays

knock out electrons from their orbit.

The electron beam has both particle and wave natures similar to

x-rays. Hence the electron beam exhibits a spectrum similar to x-rays.

Since the energy of the electron is higher than that of the x-ray, it also

produces few other emissions. The various emissions are:

1. transmitted electrons,

2. back-scattered electrons (BSEs),

3. secondary electrons (SEs),

4. elastically scattered electrons,

5. inelastically scattered electrons,

6. Auger electrons (AEs),

7. characteristic x-rays,
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8. Bremsstrahlung x-rays,

9. visible light (cathodoluminesence),

10. diffracted electrons (DEs), and

11. heat.

These phenomena are shown in Figure 16.1. The various emissions

occur at different depths of the material. The region that generates

these emissions is referred to as the electron interaction volume. SEs

are generated at the top of the region while the Bremsstrahlung x-rays

are generated at the bottom.

In a typical EM, not all of these are measured. For example, in the

transmission EM or TEM, the transmitted electron, elastically scat-

tered electron and inelastically scattered electrons are measured, and

in the scanning EM (SEM), BSEs or SEs are measured.

FIGURE 16.1: Intensity distributions.

Since we discussed Bremsstrahlung and characteristic x-rays earlier,

we will focus on the other important emissions, the BSEs, SEs and TEs,

in this chapter.
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16.2.3 Interaction of Electrons in TEM

The TEM measures three different electrons during its imaging pro-

cess. They are transmitted electrons, elastically scattered (or diffracted

electrons), and inelastically scattered electrons.

In Chapter 13, we discussed image formation by exposing a pho-

tographic plate or a digital detector to an x-ray beam after it passes

through material. The image is formed using the varying intensity of

the x-ray in proportion to the thickness and attenuation coefficient of

the material at various points. In the TEM, the incident beam of elec-

trons replaces the x-ray. This beam is transmitted through the specimen

without any significant change in intensity, unlike x-ray. This is due to

the fact that the electron beam has very high energy and that the

specimen is extremely thin (on the order of 100 microns). The region

in the specimen that is opaque will transmit fewer electrons and appear

darker.

A part of the beam is scattered elastically (i.e., with no loss of

energy) by the atoms in the specimen. These electrons follow Bragg’s

law of diffraction. The resultant image is a diffraction pattern.

The inelastically scattered electrons (i.e., with loss of energy) con-

tribute to the background. The specimen used in the TEM is gener-

ally very thin. Increasing the thickness of the specimen results in more

inelastic scattering and hence more background.

16.2.4 Interaction of Electrons in SEM

The TEM specimens are generally thin and hence there are fewer

modes of interaction. The SEM, on the other hand, uses a thick or bulk

specimen and hence has more modes of interaction in addition to the

modes discussed in Section 16.2.3.

In the SEM, the various modes of interaction are:

1. Characteristic x-rays,

2. Bremsstrahlung x-rays,
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3. Back-scattered electrons (BSEs),

4. Secondary electrons (SEs),

5. Auger electrons

6. Visible light, and

7. Heat.

The generation of characteristic x-rays and Bremsstrahlung x-rays

was discussed in Chapter 13. The former is produced by the knock-out

of an electron from its orbit by the fast-moving electron, while the latter

is produced by deceleration of the electron during its transit through

material.

The mechanism of generation of Auger electrons is similar to charac-

teristic x-rays. When a fast-moving electron ejects an electron in orbit,

it leaves a vacancy in the inner shell. An electron from a higher shell

fills this vacancy. The excess energy is released as an x-ray in the case of

the characteristic x-ray, while an electron is ejected during Auger elec-

tron formation. Since the Auger electron has low energy, it is generally

formed only on the surface of the specimen.

SEs are low-voltage electrons. They are generally less than 50 eV in

energy. They are generally emitted at the top of the specimen, as their

energy is too small to be emitted inside the material and still escape

to be detected. Since SEs are emitted from the top of the surface, they

are used for imaging the topography of the sample.

BSEs are obtained by the scattering of the primary electron by

the specimen. This scattering occurs at depths higher than the regions

where SEs are generated. Materials with high atomic numbers produce

a significantly larger number of BSEs and hence appear brighter in the

BSEs detector image. Since BSE are emitted from the inside of the

specimen, they are used for imaging the chemical composition of the

specimen and also for topographic imaging.
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16.3 Construction of EMs

16.3.1 Electron Gun

The electron gun generates an accelerated beam of electrons. There

are two different types of electron gun: the thermionic gun and field

emission gun. In the former, electrons are emitted by heating a fila-

ment while in the latter, electrons are emitted by the application of an

extraction potential.

A schematic of the thermionic gun is shown in Figure 16.2. The

filament is heated by passing current, which generates electrons by the

process of thermionic emission. It is defined as emission of electrons

by absorption of thermal energy. The number of electrons produced is

proportional to the current through the filament. The Wehnelt cap is

maintained at a small negative potential, so that the negatively charged

electrons are accelerated in the direction shown through the small open-

ing. The anode is maintained at a positive potential, so that the elec-

trons travel down the column toward the specimen. The acceleration is

achieved by the voltage between the cap and the anode.

The filament can be made of tungsten or lanthanum hexaboride

(LaB6) crystals. Tungsten filaments can work at high temperatures but

do not produce circular spots. The LaB6 crystals on the other hand,

can produce circular spots and hence better spatial resolution.

A schematic of the field emission gun (FEG) is shown in Figure

16.3. The filament used is a sharp tungsten metal tip. The tip is sharp-

ened to have a dimension on the order of 100 nm. In a cold FEG, the

electron from the outer shell is extracted by using the extraction volt-

age (VE). The extracted electrons are accelerated using the accelerating

voltage (VA). In the thermionic FEG, the filament is heated to generate

electrons. The extracted electrons are accelerated to high energy.
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FIGURE 16.2: Thermionic gun.

FIGURE 16.3: Field emission gun.
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16.3.2 Electromagnetic Lens

In Chapter 15, “Light Microscopes,” we discussed the purpose of the

various lenses, objective and eyepiece. The lens is chosen such that the

light from the object can be focused to form an image. Since electrons

behave like waves, they can be focused by using lenses.

From our discussion of the Image Intensifier (II) in Chapter 13, the

electrons are affected by the magnetic field. In the case of the II, this

phenomenon presents a problem and results in distortion. However, a

controlled magnetic field can be used to navigate electrons and hence

create a lens. It has been proven that an electron traveling through

vacuum in a magnetic field will follow a helical path.

FIGURE 16.4: Electromagnetic lens.

The electrons enter the magnetic field at point O1 (Figure 16.4).

Point O2 is the point where all electrons generated by the electron

gun are focused by the magnetic field. The distance O1-O2 is the focal

length of the lens. The mathematical relationship that defines focal

length is given by

f = K
V

i2
(16.7)

where K is a constant based on the design of the coil at the geometry,

V is the accelerating voltage, and i is the current through the coil. As

can be seen, either increasing the voltage or reducing the current in
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the coil can increase focal length. In an optical microscope, the focal

length for a given lens is fixed while it can be changed in the case

of an electromagnetic lens. Hence, in an optical microscope, the only

method for changing the focal length is by either changing the lens

(using objective turret) or by changing the spacing between the lenses.

On the other hand, in an electromagnetic lens, the magnification can

be changed by altering the voltage and current. The electromagnetic

lens suffers from aberrations similar to optical lenses. Some of these are

astigmatism, chromatic aberration, and spherical aberration. They can

be overcome by designing and manufacturing under high tolerance.

16.3.3 Detectors

Secondary electron detectors: SEs are measured using the

Everhart-Thornley detector (Figure 16.5). It consists of a Faraday cage,

a scintillator, a light guide and a photo-multiplier tube. SEs have very

low-energy (less than 50 eV). To attract these low energy electrons, a

positive voltage on the order of 100 V is applied to the Faraday cage in

order to attract SEs. The scintillator is maintained at a very high posi-

tive voltage to attract the SEs. The SEs are converted to light photons

by the scintillator. The light generated is too weak to form an image.

Hence the light is guided through a light guide onto a photo-multiplier

tube, which amplifies the light signal to form an image.

Back-scattered electron detectors: BSEs have very high energy

and hence readily travel to a detector. BSEs also travel in all directions

and hence a directional detector, such as the Everhart-Thornley detec-

tor can only collect a few electrons and will not be enough to form a

complete image. BSE detectors are generally doughnut shaped (Figure

16.6) and placed around the electron column just below the objective

lens. The detecting element is either a semiconductor or a scintillator

that converts the incident electron into light photons that are recorded

using a camera.
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FIGURE 16.5: Everhart-Thornley secondary electron detector.

FIGURE 16.6: Back-scattered electron detector.

16.4 Specimen Preparations

The specimen needs to be electrically conductive. Hence, biologi-

cal specimens are coated with a thin layer of electrically conductive
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material such as gold, platinum, tungsten, etc. In some cases, a bio-

logical sample cannot be coated without affecting the integrity of the

specimen. In such cases, an SEM can be operated at low voltage. Mate-

rials made of metal do not have to be coated, as they are electrically

conductive.

Since the electron beam can only travel in vacuum, the specimen

needs to be prepared for placement in a vacuum chamber. Materials

with water need to be dehydrated. The dehydration process causes the

specimen to shrink and change in shape. Hence the specimen has to be

chemically fixed, in which water is replaced by organic compounds. The

specimen is then coated with electrically conductive material before

imaging.

An alternate method is to freeze the sample using cryofixation. In

this method, the specimen is cooled rapidly by plunging into liquid

nitrogen (boiling point = −195.8oC). The rapid cooling of the specimen

preserves its internal structure so that it can be imaged accurately. The

rapid cooling ensures that ice crystals, which can damage the specimen,

do not form. In the case of the TEM, since the specimen has to be thin,

the cryofixated specimen is cut into thin slices or microtomy.

16.5 Construction of the TEM

In the previous sections, we have discussed the various components

of the TEM and SEM. In the next two sections, we will integrate the

various parts to construct the TEM and SEM. Figure 16.7 illustrates

the bare-bones optical microscope, TEM, and SEM. Although this dis-

cussion is for illustration purposes, the complete equipment consists of

multiple controls to ensure good image quality.

In each case, a source of light or electrons is at the top. The light

in the case of the optical microscope travels through a condenser lens,

a specimen, and then the objective or eyepiece, to be either viewed by

an eye or imaged using a detector.
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In the case of the TEM, the source is the electron gun. The acceler-

ated electrons are focused using a condenser lens, transmitted through

the specimen and finally focused to form an image using objective and

eyepiece magnetic lenses. Since the electron beam can only travel in

vacuum, the entire setup is placed in a vacuum chamber.

FIGURE 16.7: Comparison of the optical microscope, TEM, and SEM.

An example of an image of Sindbis virus obtained using TEM is

shown in Figure 16.8 [ZMP+02].

16.6 Construction of the SEM

Figure 16.7 illustrates the schematics of the light microscope, TEM,

and SEM. Figure 16.9 is an example of an SEM machine. In the case of

the SEM, the source is the electron gun as in the TEM. The accelerated

electron is then focused using a condenser lens to form a small spot on

the specimen. The electron beam interacts with the specimen and emits

BSEs, SEs, Auger electrons, etc. These are measured using the detector
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(a) A slice of 3D image obtained
using a TEM.

(b) All slices rendered to an iso-
surface.

FIGURE 16.8: TEM slice and its iso-surface rendering. Original image
reprinted with permission from Dr. Wei Zhang, University of Min-
nesota.

discussed previously to form an image. Since the electron beam can only

travel in vacuum, the entire setup is placed in a vacuum chamber.

An example of an image obtained using an SEM is shown in Figure

16.10.

16.7 Factors Determining Image Quality

The three factors that determine the quality of image are

• voltage,

• working distance,

• spot size.

Voltage: The voltage is generally less than 30 kV. Better contrast

(i.e., higher contrast resolution) can be obtained using higher voltage.
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FIGURE 16.9: An SEM machine. Original image reprinted with per-
mission from Carl Zeiss Microscopy, LLC.

FIGURE 16.10: BSE image obtained using an SEM.

Lower voltage can be used to image a biological specimen without the

need for fixation. As discussed earlier, higher voltage produces electrons

that can penetrate the specimen deeper and hence larger interaction

volume. As the interaction volume increases, the composition of the
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specimen response to the electron beam changes. For example, at low

voltage, auger electrons and secondary electrons are primarily emitted

from the interaction of the electron beam and the specimen. At high

voltage, back-scattered electrons and x-rays are emitted.

Working distance (WD): It is the distance between the end of the

electron column and the top of the specimen. Shorter working dis-

tance is used for high-resolution imaging. For flat objects such as semi-

conductor wafers, WD is almost a constant, while it could vary signifi-

cantly while imaging biological specimens.

Spot size: The spot size determines the spatial resolution of the

image. Smaller spot size results in higher spatial resolution and vice

versa.

16.8 Summary

• The EM involves bombarding high-speed electron beams on a

specimen and recording its response.

• Imaging an electron is possible, as it exhibits both particle and

wave natures.

• The wavelength of the electron is inversely proportional to the

square root of the accelerating voltage. Increasing the accelerat-

ing voltage results in lower wavelength or higher resolution. The

typical accelerating voltage is 30kV.

• A high-speed electron beam bombards a specimen and generates

characteristic x-rays, Bremsstrahlung x-rays, back-scattered elec-

trons (BSEs), secondary electrons (SEs), Auger electrons, visible

light, and heat. BSEs and SEs are the most commonly measured

in the SEM.

• The EM focuses the beam using an electromagnetic lens.
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• The BSE is measured using a doughnut-shaped detector wrapped

around the axis of the electron beam.

• The SE is measured using an Everhart-Thornley detector.

• Unlike a light microscope, in the case of electron microscopes,

the specimen needs to be carefully prepared as the imaging is

conducted in vacuum.

• The parameters that determine the quality of image are voltage,

working distance, and spot size.

16.9 Exercises

1. The accelerating voltage of an SEM is 10kV. Calculate the wave-

length of the generated electron.

2. Compare and contrast the working principles of the TEM and

SEM.

3. List the order of generation of various spectrums in the electron

interaction volume beginning with the surface of the specimen.



Appendix A

Process-Based Parallelism using

Joblib

A.1 Introduction to Process-Based Parallelism

The execution of a Python code launches a Python process that

accepts the instruction and executes it. If we need to process multi-

ple images (for example) using the same instruction, then the Python

process runs the instruction on each of the images sequentially. If we

have 8 images and if each image takes a minute to process, the total

processing time would be 8 minutes. However, a typical modern com-

puter has multiple cores each of which can handle one Python process.

So it would be preferable to process each of these images in paral-

lel and use all the cores in a modern computer. This can be achieved

using Python’s joblib module. If a computer has 8 cores and we start

8 Python processes, then the processing described previously can be

completed in 1 minute at a speedup of 8X. Modern servers have 12+

cores and hence we can obtain considerable speedup using joblib.

A.2 Introduction to Joblib

The module joblib ([Job20]) is designed to perform process-based

parallelism. It has other functionalities but we will limit the discussion

only to parallelism. The joblib mechanism for parallelization is a single

381
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class called Parallel. This simple mechanism enables easy conversion

of an existing serial code to parallel without significant cost to the

programmer.

The Parallel class instance takes a generator expression [PC18]. The

generator in Python returns an object (also called an iterator) which we

can iterate over and fetch one value at a time. The function that needs

to be parallelized has to be decorated by joblib’s ‘delayed’ decorator.

We will discuss a few examples where we will compute the value of

cube of numbers between 0 and 9 to demonstrate the syntax of a joblib

parallel code. We will then complete the task by processing images in

parallel using joblib.

A.3 Parallel Examples

In the next three examples, we will parallelize the same functional-

ity. The task to parallelize is defined in the function called cube. The

function takes an argument ’x’ and returns its cube. In all cases, we

import the class Parallel and the decorator delayed from joblib. The

parameter n jobs determines the number of parallel processes. A value

of −1 indicates that the number of parallel processes will be equal to

the number of cores. If a value of 1 is used, then the number of parallel

processes will be 1.

When running the examples below, we recommend opening the pro-

cess monitor in your operating system, such as Task Manager for Win-

dows, Activity Monitor for Mac, or top on Linux, and notice that new

Python processes are created proportional to the value of n jobs.

In the first example, the cube function is decorated with the delayed

decorator. The generator expression fetches each of the values 0, 1 ... 9

and passes it to the cube function.

from joblib import Parallel, delayed
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def cube(x):

return x*x*x

Parallel(n_jobs=-1)(delayed(cube)(i) for i in range(10))

In the second example, we decorate the cube function using delayed,

and using the more familiar @ syntax above the function definition and

hence make the generator expression cleaner.

from joblib import Parallel, delayed

@delayed

def cube(x):

return x*x*x

Parallel(n_jobs=-1)(cube(i) for i in range(10))

In the third example, we use the decorated cube function and pro-

duce an explicit generator expression. We then feed this generator

expression to the Parallel class.

from joblib import Parallel, delayed

@delayed

def cube(x):

return x*x*x

gen = (cube(i) for i in range(10))

Parallel(n_jobs=-1)(gen)

These three mechanisms produce the same result but the authors

find the third method more readable.
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In the last example, we will discuss a more realistic parallelization

case. In this example, we will perform sigmoid correction that we dis-

cussed in Chapter 5. The sigmoid function takes the file name as input,

reads the image using OpenCV, then performs sigmoid correction and

stores the corrected image as a file. The function is decorated with

@delayed so that it can be run in parallel. The generator expression

(called gen in the example) accepts a list of file names, iterates over

them and calls the sigmoid function for each image. When the code is

executing, open the ‘process monitor’ for your operating system and

you will notice multiple Python processes running.

import os

import cv2

from skimage.exposure import adjust_sigmoid

from joblib import Parallel, delayed

@delayed

def sigmoid(folder, file_name):

path = os.path.join(folder, file_name)

img = cv2.imread(path)

img1 = adjust_sigmoid(img, gain=15)

output_path = os.path.join(folder,

'sigmoid_'+file_name)

cv2.imwrite(output_path, img1)

folder = 'input'

file_names = ['angiogram1.png', 'sem2.png',

'hequalization_input.png']

gen = (sigmoid(folder, file_name) for file_name in

file_names)

Parallel(n_jobs=-1)(gen)

print("Processing completed.")
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Parallel Programming using MPI4Py

B.1 Introduction to MPI

Message Passing Interface (MPI) is a system designed for program-

ming parallel computers. It defines a library of routines that can be

programmed using Fortran or C and is supported by most hardware

vendors. There are popular MPI versions both free and commercially

available for use. MPI version 1 was released in 1994. The current ver-

sion is MPI2. This appendix serves as a brief introduction to parallel

programming using Python and MPI. Interested readers are encour-

aged to check the MPI4Py documentation [MPI20] and books on MPI

[GLS99] and [Pac11] for more details.

MPI is useful on distributed memory systems and also on a shared

memory system. The distributed memory system consists of a group

of nodes (containing one or more processors) connected using a high-

speed network. Each node is an independent entity and can commu-

nicate with other nodes using MPI. The memory cannot be shared

across nodes, i.e., the memory location in one node is not accessible by

a process running in another node. The shared memory system con-

sists of a group of nodes that can access the same memory location

from all nodes. Shared memory systems are easier to program using

OpenMP, thread programming, MPI, etc., as they can be imagined as

one large desktop. Distributed memory systems need MPI for node-to-

node communication and can also be programmed using OpenMP or

thread-based programming for within-node computation.
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There is a large amount of literature available in print as well as

online that teaches MPI and OpenMP programming [Ope20b]. Since

this is about Python programming, we limit the scope of this section

to programming MPI using Python. We will discuss one of the MPI

wrappers for Python called MPI4Py. Before we begin the discussion on

MPI4Py, we will explain the need for MPI in image processing compu-

tation.

B.2 Need for MPI in Python Image Processing

Image acquisition results in the collection of billions of voxels of 3D

data. Analyzing these data serially by reading an image, processing it

and then reading the next one will result in long computational time. It

will cause a bottleneck, especially considering that most imaging sys-

tems are closer to real-time imaging. Hence it is critical to process the

images in parallel. Consider an image processing operation that takes

10 minutes to process on one CPU core. If there are 100 images to be

processed, the total computation time would be 1000 minutes. Instead,

if the 100 images are fed to 100 different CPU cores, the images can be

processed in 10 minutes, as all images are being processed at the same

time. This results in a speedup of 100X. The image processing can be

completed in minutes or hours instead of days or weeks. Also, many

of the image processing operations such as filtering or segmentation

can easily be parallelized. Hence, when one node is computing on one

image, the second node can compute on a different image without the

need for communication between the two nodes. Most educational and

commercial institutions have either built or purchased supercomput-

ers or clusters. Python along with MPI4Py can be used to run image

processing computation faster on these systems.
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B.3 Introduction to MPI4Py

MPI4Py is a Python binding built on top of MPI versions 1 and 2. It

supports point-to-point communication and collective communication

of Python objects. We will discuss these communications in detail. The

Python objects that can be communicated need to be picklable, i.e., the

Python objects can be saved using Python’s pickle or cPickle modules

or a numpy array.

The two modes of programming MPI are single instruction multiple

data (SIMD) and single program multiple data (SPMD). In SIMD pro-

gramming, the same instruction runs on each node but with different

data. An image processing example of SIMD processing would be per-

forming a filtering operation by dividing the image into sub-images and

writing the result to one image file for each process. In such a case, the

same instruction, filtering, is performed on each of the sub-images on

different nodes. In SPMD programming, a single program containing

multiple instructions runs on different nodes with different data. An

example would be a different filtering operation in which the image is

divided into subdivisions and filtered, but instead of writing the results

to a file, one of the nodes collects the filtered images and arranges them

before they are saved. In this case, most of the nodes perform the same

operation of filtering, while one of the nodes performs an extra oper-

ation of collecting the output from the other nodes. Generally, SPMD

operations are more common than SIMD operations. We will discuss

SPMD-based programming here.

An MPI program is constructed such that the same program runs

on each node. To change the behavior of the program for a specific

node, a test can be made for the rank of that node (also called the

node number) and alternate or additional instructions for that node

alone can be provided.
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B.4 Communicator

The communicator binds groups of processes in one MPI session.

In its simplest form, an MPI program needs to have at least one com-

municator. In the following example, we use a communicator to obtain

the size and rank of a given MPI program. The first step is to import

MPI from MPI4Py. Then the size and rank can be obtained using the

Get size() and Get rank() Python functions.

from mpi4py import MPI

import sys

size = MPI.COMM_WORLD.Get_size()

rank = MPI.COMM_WORLD.Get_rank()

print("Process %d among %d"%(rank, size))

This Python program may be run at the command-line. Typically,

in a supercomputer setting, it is submitted as a job such as a portable

batch system (PBS) job. An example of such a program is shown below.

In the second line of the program, the number of nodes is specified using

nodes, the number of processors per node using ppn, the amount of

memory per processor using pmem, and the time for which the program

needs to be executed using walltime. The walltime in this example is

10 minutes. In the third line of the program, the directory where the

Python program and other files are located is specified. The program

can be saved as a text file under the name “run.pbs.” The name is

arbitrary and can be replaced with any other valid file name for a text

file.

#!/bin/bash

#PBS -l nodes=1:ppn=8,pmem=1750mb,walltime=00:10:00
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cd $PBS_O_WORKDIR

module load python-epd

module load gcc ompi/gnu

mpirun -np 8 python firstmpi.py

The PBS script must be submitted using the command “qsub

run.pbs.” The queuing system completes its tasks and outputs two

files: an error file containing any error messages generated during the

program execution and an output file containing the content of com-

mand line output from the program. In the next few examples, the

same PBS script will be used for execution with a change in the name

of the Python file.

B.5 Communication

One of the important tasks of MPI is to allow communication

between two different ranks or nodes as evidenced by its name “Message

Passing Interface.” There are many modes of communication. The most

common are point-to-point and collective communication. Communi-

cation in the case of MPI generally involves transfer of data between

different ranks. MPI4Py allows transfer of any picklable Python objects

or numpy arrays.

B.5.1 Point-to-Point Communication

Point-to-point communication involves passing messages or data

between only two different MPI ranks or nodes. One of these ranks

sends the data while the other receives it.

There are different types of send and receive functions in MPI4Py.

They are:
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• Blocking communication

• Nonblocking communication

• Persistent communication

In blocking communication, MPI4Py blocks the rank until the data

transfer between the ranks is completed and the rank can be safely

returned to the main program. Thus, no computation can be performed

on the rank until the communication is complete. This mode is inef-

ficient as the ranks are idle during data transfer. The commonly used

functions for blocking communication in MPI4Py are send(), recv(),

Send(), Recv() etc.

In nonblocking communication, the node that is transferring does

not wait for the data transfer to be completed before it begins process-

ing the next instruction. In nonblocking communication, a test is exe-

cuted at the end of data transfer to ensure its success while in blocking

communication, the test is the completion of data transfer. The com-

monly used functions for nonblocking communication in MPI4Py are

isend(), irecv(), Isend(), Irecv(), etc.

In some cases, the communication needs to be kept open between

pairs of ranks. In such cases, persistent communication is used. It is a

subset of nonblocking communication that can be kept open. It reduces

the overhead in creating and closing communication if a nonblocking

communication is used instead. The commonly used functions for point-

to-point communication in MPI4Py are Send init() and Recv init().

The following program is an example of blocking communication.

The rank 0 creates a picklable Python dictionary called data that con-

tains two key-value pairs. It then sends the “data” to the second rank

using send function. The destination for this data is indicated in the

dest parameter. Rank 1 (under the elif statement), receives the “data”

using the recv function. The source parameter indicates that the data

needs to be received from the rank 0.

from mpi4py import MPI

comm = MPI.COMM_WORLD
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rank = comm.Get_rank()

if rank == 0:

data = 'a': 7, 'b': 3.14

comm.send(data, dest=1, tag=11)

print("Message sent, data is: ", data)

elif rank == 1:

data = comm.recv(source=0, tag=11)

print("Message Received, data is: ", data)

B.5.2 Collective Communication

Collective communication allows transmission of data between mul-

tiple ranks simultaneously. This communication is a blocking commu-

nication. A few scenarios in which can be used are:

• “Broadcast” data to all ranks.

• “Scatter” a chunk of data to different ranks.

• “Gather” data from all ranks.

• “Reduce” data from all ranks and perform mathematical opera-

tions.

In broadcast communication, the same data is copied to all the

ranks. It is used to distribute an array or object that will be used by

all the ranks. For example, a Python tuple can be distributed to the

various ranks as data that can be used for computation.

In the scatter method, the data is broken into multiple chunks and

each of these chunks is transferred to different ranks. This method can

be used for breaking (say) an image into multiple parts and transferring

the parts to different ranks. The ranks can then perform the same

operation on the different sub-images.

In the gather method, the data from different ranks are aggregated

and moved to one of the ranks. A variation of the gather method is the
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“allgather” method. This method collects the data from different ranks

and places them in all the ranks.

In the reduce method, the data from different ranks are aggre-

gated and placed in one of the ranks after performing reduction opera-

tions such as summation, multiplication, etc. A variation of the reduce

method is the “allreduce” method. This method collects the data from

different ranks, performs reduction operations and places the result in

all the ranks.

The program below uses broadcast communication to pass a 3-by-3

numpy array to all ranks. The numpy array containing all ones except

for the central element is created in rank 0 and is broadcast using the

bcast function.

from mpi4py import MPI

import numpy

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 0:

data = numpy.ones((3,3))

data[1,1] = 3.0

else:

pass

data = comm.bcast(data, root=0)

print("rank = ", rank)

print("data = ", data)
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B.6 Calculating the Value of PI

The following program combines the elements of MPI that we have

illustrated so far. The various MPI programming principles that will

be used in this example are the MPI barrier, MPI collective communi-

cation, and specifically MPI reduce, in addition to MPI ranks.

The program calculates the value of PI using the Gregory-Leibniz

series. A serial version of the program was discussed in Chapter 2,

”Computing using Python modules.” The program execution begins

with the line “if name .” The rank and size of the program are

first obtained. The total number of terms is divided across the vari-

ous ranks, so that each rank receives the same number of terms. Thus,

if the program has 10 ranks and the total number of terms is 1 million,

each rank will compute 100,000 terms. Once the number of terms is

calculated, the “calc partial pi” function is called. This function calcu-

lates the “partial pi” value for each rank and stores it in the variable

“partialval.” The MPI barrier function is called to ensure that all the

ranks have completed their computation before the next line, namely

the comm.reduce() function, is executed to sum the values from vari-

ous ranks and store it in the variable “finalval.” Finally, the first rank

prints the value of pi, namely the content of finalval.

from mpi4py import MPI

import sys

import numpy as np

import time

def calc_partial_pi(rank, noofterms):

start = rank*noofterms*2+1

lastterm = start+(noofterms-1)*2

denominator = np.linspace(start, lastterm, noofterms)

numerator = np.ones(noofterms)



394 Image Processing and Acquisition using Python

for i in range(0, noofterms):

numerator[i] = pow(-1, i+noofterms*rank)

# Find the ratio and sum all the fractions

# to obtain pi value

partialval = sum(numerator/denominator)*4.0

return partialval

if __name__ == '__main__':

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

size = MPI.COMM_WORLD.Get_size()

totalnoterms = 1000000

noofterms = totalnoterms/size

partialval = calc_partial_pi(rank, noofterms)

comm.Barrier()

finalval = comm.reduce(partialval, op=MPI.SUM, root=0)

if rank == 0:

print("The final value of pi is ", finalval)
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Introduction to ImageJ

C.1 Introduction

In all our discussions, we have used Python for image processing.

There are many circumstances where it will be helpful to view the

image so that it will be easy to prototype the algorithm that needs

to be written in Python for processing. There are many such software

programs, the most popular and powerful being ImageJ. This appendix

serves as an introduction to ImageJ. Interested readers are encouraged

to check the ImageJ documentation for more details at their website

[Ins20].

ImageJ is a Java-based image processing software. Its popularity is

due to the fact that it has an open architecture that can be extended by

using Java and macros. Due to its open nature, there are many plug-ins

written by scientists and experts that are available for free.

ImageJ can read and write most image formats and also specialized

formats like DICOM, etc., similar to Python. Due to its ability to read

and write images from many formats, ImageJ is popular in various

fields of science. It is used for processing radiological images, microscope

images, multi-modality images, etc.

ImageJ is available on most common operating systems such as

Microsoft Windows, MacOSX and Linux.
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C.2 ImageJ Primer

ImageJ can be installed by following the instructions at http://

rsb.info.nih.gov/ij/download.html. Depending on the operating

system, the methods for running ImageJ can vary. The instructions are

available at the site listed above. Since ImageJ is written using Java,

the interface looks the same across all operating systems, making it

easier to transition from one operating system to another. Figure C.1

shows ImageJ on MacOSX.

FIGURE C.1: ImageJ main screen

The files can be opened by using the File→Open menu. An example

of this file is shown in Figure C.2. The 3D volume data that are stored

as a series of 2D slice files can be opened using the File→Import→Image

Sequence... menu.

In Chapter 3, ”Image and its Properties,” we discussed the

basics of window and level. The window and level can be adjusted

for the image in Figure C.2. They can be accessed using the

Image→Adjust→Window/Level menu and they can be adjusted by

using the sliders shown in Figure C.3.

We have previously discussed various image processing techniques

like filtering, segmentation, etc. Such operations can also be performed

using ImageJ using the Process menu. For example, the method for

applying a median filter on the image is shown in Figure C.4.

Statistical information such as the histogram, mean, median, etc., of

an image can be obtained using the Analyze menu. Figure C.5 demon-

strates the method for obtaining the histogram using the Analyze menu.

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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FIGURE C.2: ImageJ with an MRI image.

FIGURE C.3: Adjusting window or level on an MRI image.
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FIGURE C.4: Performing median filter.

FIGURE C.5: Obtaining histogram of the image.
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MATLABR© and Numpy Functions

D.1 Introduction

This appendix serves programmers who are migrating from MAT-

LAB to Python and interested in converting their MATLAB scripts to

equivalent Python programs using numpy.

MATLAB [Mat20b] is a popular commercial software that is widely

used to perform computation in various fields of science including

image processing. Both MATLAB and Python are interpreted lan-

guages. They both are dynamic typed, i.e., variables do not have to

be declared before they are used. They both allow fast programming.

Numpy is similar in design to MATLAB in that they both oper-

ate on matrices. Because of their similarity we can find an equivalent

function in MATLAB for a specific task in numpy and vice versa. The

following table lists MATLAB functions and their equivalent numpy

function. The first column has the numpy function, the second column

contains the equivalent MATLAB function, and the last column gives

the description of the function. A more extensive table can be found at

[Sci20b].

Numpy Function MATLAB

Equivalent

Function Description

a[a < 10] = 0 a(a < 10) = 0 Elements in a with

value less than 10 are

replaced with zeros.
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Numpy Function MATLAB

Equivalent

Function Description

dot(a, b) a ∗ b Matrix multiplication.

a ∗ b a. ∗ b Element-by-element

multiplication.

a[−1] a(end) Access the last ele-

ment in the row

matrix a.

a[1, 5] a(2, 6) Access elements in

columns 2 and 6 in a.

a[3] or a[3 :] a[4] Consider entire 4th

row of a.

a[0 : 3] or a[: 3] or a[0 :

3, :]

a(1 : 3, :) Access first three

rows of a. In Python

the last index is not

included in the limits.

a[−6 :] a(end-5:end,:) Access the last six

rows of a.

a[0 : 5][:, 6 : 11] a(1 : 5, 7 : 11) Access rows 1 to 5 and

columns 7 to 11 in a.

a[:: −1, :] a(end : −1 : 1, :)

or flipud(a)

Access rows in a in

reverse order.
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Numpy Function MATLAB

Equivalent

Function Description

zeros((5, 4)) zeros(5, 4) Array of size 5-by-4 of

zeros is created. The

inner parentheses are

used because the size

of the matrix has to be

passed as a tuple.

a[r[: len(a), 0]] a([1 : end1], :) A copy of the first row

will be appended at

the end of matrix a.

linspace(1, 2, 5) linspace(1, 2, 5) Five equally spaced

samples between and

including 1 and 2 are

created.

mgrid[0 : 10., 0 : 8.] [x, y] =

meshgrid(0 :

10, 0 : 8)

Creates a 2D array

with x-values rang-

ing from [0,10] and

y-values ranging from

[0,8].

shape(a) or a.shape size(a) Gives the size of a.

tile(a, (m,n)) repmat(a,m, n) Creates m-by-n copies

of a.

a.max() max(max(a)) Output is the maxi-

mum value in the 2D

array a.

a.transpose() or a.T a′ Transpose of a.

a.conj().transpose()

or a.conj().T

a′ Conjugate transpose

of a.

linalg.matrix rank(a) rank(a) Rank of a matrix a.
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Numpy Function MATLAB

Equivalent

Function Description

linalg.inv(a) inv(a) Inverse of square

matrix a.

linalg.solve(a, b) if a

is a square matrix or

linalg.lstsq(a, b) oth-

erwise

a/b Solve for x in ax = b.

concatenate((a, b), 1)

or hstack((a, b)) or

column stack((a, b))

[a b] Concatenate columns

of a and b along the

horizontal direction.

vstack((a, b)) or

row stack((a, b))

[a; b] Concatenate columns

of a and b along the

vertical direction.
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